These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 15457717)
1. Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom. Gardner-Morse MG; Stokes IA; Churchill D; Badger G Stud Health Technol Inform; 2002; 91():167-72. PubMed ID: 15457717 [TBL] [Abstract][Full Text] [Related]
2. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. Gardner-Morse MG; Stokes IA J Orthop Res; 2003 May; 21(3):547-52. PubMed ID: 12706030 [TBL] [Abstract][Full Text] [Related]
3. Structural behavior of human lumbar spinal motion segments. Gardner-Morse MG; Stokes IA J Biomech; 2004 Feb; 37(2):205-12. PubMed ID: 14706323 [TBL] [Abstract][Full Text] [Related]
4. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Zirbel SA; Stolworthy DK; Howell LL; Bowden AE Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531 [TBL] [Abstract][Full Text] [Related]
5. Compressive preload reduces segmental flexion instability after progressive destabilization of the lumbar spine. Fry RW; Alamin TF; Voronov LI; Fielding LC; Ghanayem AJ; Parikh A; Carandang G; Mcintosh BW; Havey RM; Patwardhan AG Spine (Phila Pa 1976); 2014 Jan; 39(2):E74-81. PubMed ID: 24153162 [TBL] [Abstract][Full Text] [Related]
6. Response of Charité total disc replacement under physiologic loads: prosthesis component motion patterns. O'Leary P; Nicolakis M; Lorenz MA; Voronov LI; Zindrick MR; Ghanayem A; Havey RM; Carandang G; Sartori M; Gaitanis IN; Fronczak S; Patwardhan AG Spine J; 2005; 5(6):590-9. PubMed ID: 16291097 [TBL] [Abstract][Full Text] [Related]
7. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. Shirazi-Adl A J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628 [TBL] [Abstract][Full Text] [Related]
8. Effects of tensioning the lumbar fasciae on segmental stiffness during flexion and extension: Young Investigator Award winner. Barker PJ; Guggenheimer KT; Grkovic I; Briggs CA; Jones DC; Thomas CD; Hodges PW Spine (Phila Pa 1976); 2006 Feb; 31(4):397-405. PubMed ID: 16481949 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Tzermiadianos MN; Mekhail A; Voronov LI; Zook J; Havey RM; Renner SM; Carandang G; Abjornson C; Patwardhan AG Spine (Phila Pa 1976); 2008 Jan; 33(2):E38-43. PubMed ID: 18197089 [TBL] [Abstract][Full Text] [Related]
11. Effect of the Total Facet Arthroplasty System after complete laminectomy-facetectomy on the biomechanics of implanted and adjacent segments. Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Renner SM; Rosler DM; Ochoa JA; Patwardhan AG Spine J; 2009; 9(1):96-102. PubMed ID: 18440280 [TBL] [Abstract][Full Text] [Related]
12. Multi-planar bending properties of lumbar intervertebral joints following cyclic bending. Chow DH; Luk KD; Holmes AD; Li XF; Tam SC Clin Biomech (Bristol); 2004 Feb; 19(2):99-106. PubMed ID: 14967571 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of a new total posterior-element replacement system. Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830 [TBL] [Abstract][Full Text] [Related]
14. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838 [TBL] [Abstract][Full Text] [Related]
15. Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. Patwardhan AG; Havey RM; Carandang G; Simonds J; Voronov LI; Ghanayem AJ; Meade KP; Gavin TM; Paxinos O J Orthop Res; 2003 May; 21(3):540-6. PubMed ID: 12706029 [TBL] [Abstract][Full Text] [Related]
16. The stress and strain states of the posterior annulus under flexion. Hollingsworth NT; Wagner DR Spine (Phila Pa 1976); 2012 Aug; 37(18):E1134-9. PubMed ID: 22543250 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments. Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393 [TBL] [Abstract][Full Text] [Related]
18. Fill of the nucleus cavity affects mechanical stability in compression, bending, and torsion of a spine segment, which has undergone nucleus replacement. Arthur A; Cannella M; Keane M; Singhatat W; Vresilovic E; Marcolongo M Spine (Phila Pa 1976); 2010 May; 35(11):1128-35. PubMed ID: 20473120 [TBL] [Abstract][Full Text] [Related]
19. Effects of preload on load displacement curves of the lumbar spine. Panjabi MM; Krag MH; White AA; Southwick WO Orthop Clin North Am; 1977 Jan; 8(1):181-92. PubMed ID: 857225 [TBL] [Abstract][Full Text] [Related]
20. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Costi JJ; Stokes IA; Gardner-Morse MG; Iatridis JC Spine (Phila Pa 1976); 2008 Jul; 33(16):1731-8. PubMed ID: 18628705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]