BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 1545786)

  • 1. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock.
    Zhu Z; Mivechi NF
    J Cell Biochem; 1999 Apr; 73(1):56-69. PubMed ID: 10088724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity.
    Chen Y; Barlev NA; Westergaard O; Jakobsen BK
    EMBO J; 1993 Dec; 12(13):5007-18. PubMed ID: 8262043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock transcription factor activates transcription of the yeast metallothionein gene.
    Silar P; Butler G; Thiele DJ
    Mol Cell Biol; 1991 Mar; 11(3):1232-8. PubMed ID: 1996089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains.
    Bulman AL; Hubl ST; Nelson HC
    J Biol Chem; 2001 Oct; 276(43):40254-62. PubMed ID: 11509572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor.
    Jakobsen BK; Pelham HR
    EMBO J; 1991 Feb; 10(2):369-75. PubMed ID: 1899375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation.
    Sorger PK; Pelham HR
    Cell; 1988 Sep; 54(6):855-64. PubMed ID: 3044613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae.
    Lin JT; Lis JT
    Mol Cell Biol; 1999 May; 19(5):3237-45. PubMed ID: 10207049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae.
    Gallo GJ; Schuetz TJ; Kingston RE
    Mol Cell Biol; 1991 Jan; 11(1):281-8. PubMed ID: 1986225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins.
    Hjorth-Sørensen B; Hoffmann ER; Lissin NM; Sewell AK; Jakobsen BK
    Mol Microbiol; 2001 Feb; 39(4):914-23. PubMed ID: 11251812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress.
    Morano KA; Santoro N; Koch KA; Thiele DJ
    Mol Cell Biol; 1999 Jan; 19(1):402-11. PubMed ID: 9858564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.