BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1545789)

  • 1. Role of multifunctional autonomously replicating sequence binding factor 1 in the initiation of DNA replication and transcriptional control in Saccharomyces cerevisiae.
    Rhode PR; Elsasser S; Campbell JL
    Mol Cell Biol; 1992 Mar; 12(3):1064-77. PubMed ID: 1545789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair.
    Reed SH; Akiyama M; Stillman B; Friedberg EC
    Genes Dev; 1999 Dec; 13(23):3052-8. PubMed ID: 10601031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and characterization of the Saccharomyces cerevisiae SAB1 gene that suppresses a temperature-sensitive phenotype of the ARS-binding factor 1 mutant.
    So IS; Rhode PR; Campbell JL; Kim J
    Mol Cells; 1997 Aug; 7(4):532-6. PubMed ID: 9339899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains.
    Li R; Yu DS; Tanaka M; Zheng L; Berger SL; Stillman B
    Mol Cell Biol; 1998 Mar; 18(3):1296-302. PubMed ID: 9488444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of temperature-sensitive mutants solely from amino acid sequence.
    Chakshusmathi G; Mondal K; Lakshmi GS; Singh G; Roy A; Ch RB; Madhusudhanan S; Varadarajan R
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7925-30. PubMed ID: 15148363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abf1 Is an Essential Protein That Participates in Cell Cycle Progression and Subtelomeric Silencing in
    Hernández-Hernández G; Vera-Salazar LA; Castanedo L; López-Fuentes E; Gutiérrez-Escobedo G; De Las Peñas A; Castaño I
    J Fungi (Basel); 2021 Nov; 7(12):. PubMed ID: 34946988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invisible cities: segregated domains in the yeast genome with distinct structural and functional attributes.
    Nikolaou C
    Curr Genet; 2018 Feb; 64(1):247-258. PubMed ID: 28780612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
    Gartenberg MR; Smith JS
    Genetics; 2016 Aug; 203(4):1563-99. PubMed ID: 27516616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin.
    Yu S; Evans K; van Eijk P; Bennett M; Webster RM; Leadbitter M; Teng Y; Waters R; Jackson SP; Reed SH
    Genome Res; 2016 Oct; 26(10):1376-1387. PubMed ID: 27470111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.
    Zentner GE; Kasinathan S; Xin B; Rohs R; Henikoff S
    Nat Commun; 2015 Oct; 6():8733. PubMed ID: 26490019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin mediation of a transcriptional memory effect in yeast.
    Paul E; Tirosh I; Lai W; Buck MJ; Palumbo MJ; Morse RH
    G3 (Bethesda); 2015 Mar; 5(5):829-38. PubMed ID: 25748434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient motif search in ranked lists and applications to variable gap motifs.
    Leibovich L; Yakhini Z
    Nucleic Acids Res; 2012 Jul; 40(13):5832-47. PubMed ID: 22416066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ABF1-binding sites promote efficient global genome nucleotide excision repair.
    Yu S; Smirnova JB; Friedberg EC; Stillman B; Akiyama M; Owen-Hughes T; Waters R; Reed SH
    J Biol Chem; 2009 Jan; 284(2):966-73. PubMed ID: 18996839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.
    Schlecht U; Erb I; Demougin P; Robine N; Borde V; van Nimwegen E; Nicolas A; Primig M
    Mol Biol Cell; 2008 May; 19(5):2193-207. PubMed ID: 18305101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae.
    Yarragudi A; Parfrey LW; Morse RH
    Nucleic Acids Res; 2007; 35(1):193-202. PubMed ID: 17158163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers.
    Zou Y; Yu Q; Bi X
    Mol Cell Biol; 2006 Oct; 26(20):7806-19. PubMed ID: 16908533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression.
    Irlbacher H; Franke J; Manke T; Vingron M; Ehrenhofer-Murray AE
    Genes Dev; 2005 Aug; 19(15):1811-22. PubMed ID: 16077008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae.
    Yarragudi A; Miyake T; Li R; Morse RH
    Mol Cell Biol; 2004 Oct; 24(20):9152-64. PubMed ID: 15456886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage.
    Gómez M; Brockdorff N
    Proc Natl Acad Sci U S A; 2004 May; 101(18):6923-8. PubMed ID: 15105447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of mutations that are synthetic lethal with pol3-13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae.
    Chanet R; Heude M
    Curr Genet; 2003 Aug; 43(5):337-50. PubMed ID: 12759774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.