BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15458084)

  • 1. Intraoperative 3D shape recovery of abdominal organs for laparoscopic data fusion.
    Hayashibe M; Suzuki N; Nakamura Y; Hattori A; Suzuki S
    Stud Health Technol Inform; 2002; 85():188-94. PubMed ID: 15458084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-scan endoscope system for intraoperative geometry acquisition and surgical robot safety management.
    Hayashibe M; Suzuki N; Nakamura Y
    Med Image Anal; 2006 Aug; 10(4):509-19. PubMed ID: 16624612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-pointing endoscope system for natural 3D interface between robotic equipments and surgeons.
    Nakamura Y; Hayashibe M
    Stud Health Technol Inform; 2001; 81():348-54. PubMed ID: 11317767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time 3D deformation imaging of abdominal organs in laparoscopy.
    Hayashibe M; Suzuki N; Nakamura Y; Hattori A
    Stud Health Technol Inform; 2003; 94():117-23. PubMed ID: 15455875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm.
    Sutherland GR; Latour I; Greer AD
    IEEE Eng Med Biol Mag; 2008; 27(3):59-65. PubMed ID: 18519183
    [No Abstract]   [Full Text] [Related]  

  • 6. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system.
    Melzer A; Gutmann B; Remmele T; Wolf R; Lukoscheck A; Bock M; Bardenheuer H; Fischer H
    IEEE Eng Med Biol Mag; 2008; 27(3):66-73. PubMed ID: 18519184
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of an integrated needle insertion system with image guidance and deformation simulation.
    Kobayashi Y; Onishi A; Watanabe H; Hoshi T; Kawamura K; Hashizume M; Fujie MG
    Comput Med Imaging Graph; 2010 Jan; 34(1):9-18. PubMed ID: 19815388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-Compatible Robotics.
    Gassert R; Burdet E; Chinzei K
    IEEE Eng Med Biol Mag; 2008; 27(3):12-4. PubMed ID: 18519176
    [No Abstract]   [Full Text] [Related]  

  • 10. A navigation system for open liver surgery: design, workflow and first clinical applications.
    Peterhans M; vom Berg A; Dagon B; Inderbitzin D; Baur C; Candinas D; Weber S
    Int J Med Robot; 2011 Mar; 7(1):7-16. PubMed ID: 21341357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder.
    Zhao Z
    Biomed Mater Eng; 2014; 24(6):2665-72. PubMed ID: 25226970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.
    Hayashibe M; Suzuki N; Hattori A; Suzuki S; Konishi K; Kakeji Y; Hashizume M
    Stud Health Technol Inform; 2005; 111():164-6. PubMed ID: 15718720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D structure from endoscopic images.
    Kübler C; Heinze P; Raczkowsky J; Wörn H
    Stud Health Technol Inform; 2002; 85():252-4. PubMed ID: 15458096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer guidance system for single-incision bimanual robotic surgery.
    Carbone M; Turini G; Petroni G; Niccolini M; Menciassi A; Ferrari M; Mosca F; Ferrari V
    Comput Aided Surg; 2012; 17(4):161-71. PubMed ID: 22687053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a data fusion system using color information for real-time intraoperative liver surface measurement.
    Uematsu M; Suzuki N; Hattori A; Otake Y; Hayashibe M; Suzuki S; Uchiyama A
    Stud Health Technol Inform; 2003; 94():367-9. PubMed ID: 15455926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms.
    Moglia A; Turini G; Ferrari V; Ferrari M; Mosca F
    Stud Health Technol Inform; 2011; 163():379-85. PubMed ID: 21335823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.
    Nakamoto M; Nakada K; Sato Y; Konishi K; Hashizume M; Tamura S
    IEEE Trans Med Imaging; 2008 Feb; 27(2):255-70. PubMed ID: 18334447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Robotic-assisted operations in digestive and endocrine surgery using Da Vinci system].
    Bresler L
    Ann Chir; 2006 May; 131(5):299-301. PubMed ID: 16630532
    [No Abstract]   [Full Text] [Related]  

  • 20. Computer- and robot-assisted stereotaxy for high-precision small animal brain exploration.
    Ramrath L; Vogt S; Jensen W; Hofmann UG; Schweikard A
    Biomed Tech (Berl); 2009 Feb; 54(1):8-13. PubMed ID: 19182868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.