BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15458128)

  • 1. Stroke rehabilitation at home using virtual reality, haptics and telemedicine.
    Rydmark M; Broeren J; Pascher R
    Stud Health Technol Inform; 2002; 85():434-7. PubMed ID: 15458128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality and haptics as an assessment device in the postacute phase after stroke.
    Broeren J; Björkdahl A; Pascher R; Rydmark M
    Cyberpsychol Behav; 2002 Jun; 5(3):207-11. PubMed ID: 12123242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rutgers Arm, a rehabilitation system in virtual reality: a pilot study.
    Kuttuva M; Boian R; Merians A; Burdea G; Bouzit M; Lewis J; Fensterheim D
    Cyberpsychol Behav; 2006 Apr; 9(2):148-51. PubMed ID: 16640468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality-enhanced stroke rehabilitation.
    Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation.
    Houtsma JA; Van Houten FJ
    Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality-based post-stroke hand rehabilitation.
    Boian R; Sharma A; Han C; Merians A; Burdea G; Adamovich S; Recce M; Tremaine M; Poizner H
    Stud Health Technol Inform; 2002; 85():64-70. PubMed ID: 15458061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rehabilitation after stroke using virtual reality, haptics (force feedback) and telemedicine.
    Broeren J; Dixon M; Sunnerhagen KS; Rydmark M
    Stud Health Technol Inform; 2006; 124():51-6. PubMed ID: 17108503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results.
    Lam P; Hebert D; Boger J; Lacheray H; Gardner D; Apkarian J; Mihailidis A
    J Neuroeng Rehabil; 2008 May; 5():15. PubMed ID: 18498641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Low-Cost Adaptive Balance Training Platform for Stroke Patients: A Usability Study.
    Verma S; Kumar D; Kumawat A; Dutta A; Lahiri U
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):935-944. PubMed ID: 28207400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A treadmill and motion coupled virtual reality system for gait training post-stroke.
    Fung J; Richards CL; Malouin F; McFadyen BJ; Lamontagne A
    Cyberpsychol Behav; 2006 Apr; 9(2):157-62. PubMed ID: 16640470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.
    Shiri S; Feintuch U; Lorber-Haddad A; Moreh E; Twito D; Tuchner-Arieli M; Meiner Z
    Top Stroke Rehabil; 2012; 19(4):277-86. PubMed ID: 22750957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual rehabilitation after stroke.
    Broeren J; Bjorkdahl A; Claesson L; Goude D; Lundgren-Nilsson A; Samuelsson H; Blomstrand C; Sunnerhagen KS; Rydmark M
    Stud Health Technol Inform; 2008; 136():77-82. PubMed ID: 18487711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuro-physical rehabilitation by means of novel touch technologies.
    Confalonieri M; Tomasi P; Depaul M; Guandalini G; Baldessari M; Oss D; Prada F; Mazzalai A; Da Lio M; De Cecco M
    Stud Health Technol Inform; 2013; 189():158-63. PubMed ID: 23739376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding.
    Deutsch JE; Lewis JA; Burdea G
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):30-5. PubMed ID: 17436873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telerehabilitation using the Rutgers Master II glove following carpal tunnel release surgery: proof-of-concept.
    Heuser A; Kourtev H; Winter S; Fensterheim D; Burdea G; Hentz V; Forducey P
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):43-9. PubMed ID: 17436875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual TeleRehab: a case study.
    Pareto L; Johansson B; Zeller S; Sunnerhagen KS; Rydmark M; Broeren J
    Stud Health Technol Inform; 2011; 169():676-80. PubMed ID: 21893833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach.
    Sugarman H; Dayan E; Weisel-Eichler A; Tiran J
    Cyberpsychol Behav; 2006 Apr; 9(2):178-82. PubMed ID: 16640475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Reality environment assisting post stroke hand rehabilitation: case report.
    Tsoupikova D; Stoykov N; Kamper D; Vick R
    Stud Health Technol Inform; 2013; 184():458-64. PubMed ID: 23400202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Home based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome.
    Weightman A; Preston N; Levesley M; Holt R; Mon-Williams M; Clarke M; Cozens AJ; Bhakta B
    J Rehabil Med; 2011 Mar; 43(4):359-63. PubMed ID: 21347508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.