BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15458144)

  • 1. Estimation of soft-tissue model parameters using registered pre- and postoperative facial surface scans.
    Teschner M; Girod S
    Stud Health Technol Inform; 2002; 85():520-2. PubMed ID: 15458144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction.
    Xia J; Samman N; Yeung RW; Wang D; Shen SG; Ip HH; Tideman H
    Int J Oral Maxillofac Surg; 2000 Aug; 29(4):250-8. PubMed ID: 11030394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformable modeling of facial tissue for craniofacial surgery simulation.
    Keeve E; Girod S; Kikinis R; Girod B
    Comput Aided Surg; 1998; 3(5):228-38. PubMed ID: 10207647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of in-vivo force response of intra-abdominal soft tissues for surgical simulation.
    Tay BK; Stylopoulos N; De S; Rattner DW; Srinivasan MA
    Stud Health Technol Inform; 2002; 85():514-9. PubMed ID: 15458143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft-tissue simulation using LEM--Long Elements Method.
    Balaniuk R
    Stud Health Technol Inform; 2002; 85():38-44. PubMed ID: 15458057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional soft tissue prediction using finite elements. Part II: Clinical application.
    Holberg C; Heine AK; Geis P; Schwenzer K; Rudzki-Janson I
    J Orofac Orthop; 2005 Mar; 66(2):122-34. PubMed ID: 15827700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics.
    Brown JD; Rosen J; Moreyra M; Sinanan M; Hannaford B
    Stud Health Technol Inform; 2002; 85():71-3. PubMed ID: 15458062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-D simulation of craniofacial surgical procedures.
    Teschner M; Girod S; Girod B
    Stud Health Technol Inform; 2001; 81():502-8. PubMed ID: 11317798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation.
    Mollemans W; Schutyser F; Nadjmi N; Maes F; Suetens P
    Med Image Anal; 2007 Jun; 11(3):282-301. PubMed ID: 17493864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.
    Swennen GR; Mollemans W; De Clercq C; Abeloos J; Lamoral P; Lippens F; Neyt N; Casselman J; Schutyser F
    J Craniofac Surg; 2009 Mar; 20(2):297-307. PubMed ID: 19276829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Accuracy of computerized aid diagnosis, surgical simulation and facial appearance prediction in orthognathic surgery].
    Zhang X; Wang X; Zhang Z
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1998 Jan; 33(1):6-9. PubMed ID: 11774682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-efficient suturing simulation with pre-computed models.
    Arikatla VS; Sankaranarayanan G; De S
    Stud Health Technol Inform; 2011; 163():31-5. PubMed ID: 21335753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved virtual surgical cutting based on physical experiments.
    Lim YJ; Jones DB; De S
    Stud Health Technol Inform; 2005; 111():301-7. PubMed ID: 15718749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced hybrid cutting method with an improved state machine for surgical simulation.
    Zhang J; Gu L; Li X; Fang M
    Comput Med Imaging Graph; 2009 Jan; 33(1):63-71. PubMed ID: 19058949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of 2 methods of making surgical models for correction of facial asymmetry.
    Wong TY; Fang JJ; Chung CH; Huang JS; Lee JW
    J Oral Maxillofac Surg; 2005 Feb; 63(2):200-8. PubMed ID: 15690288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery.
    Basafa E; Farahmand F; Vossoughi G
    Stud Health Technol Inform; 2008; 132():23-5. PubMed ID: 18391249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surgical simulator for planning and performing repair of cleft lips.
    Schendel S; Montgomery K; Sorokin A; Lionetti G
    J Craniomaxillofac Surg; 2005 Aug; 33(4):223-8. PubMed ID: 15975810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic deformation of elastic organ model and the VR cockpit for virtual surgery and tele-surgery.
    Suzuki S; Suzuki N; Hattori A; Uchiyama A
    Stud Health Technol Inform; 2003; 94():354-6. PubMed ID: 15455923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an approximation to the euclidean skeleton for efficient collision detection and tissue deformations in surgical simulators.
    Webster R; Harris M; Shenk R; Blumenstock J; Gerber J; Billman C; Benson A; Haluck R
    Stud Health Technol Inform; 2005; 111():596-8. PubMed ID: 15718804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FEM-based soft tissue destruction model for ablation simulator.
    Kume N; Nakao M; Kuroda T; Yoshihara H; Komori M
    Stud Health Technol Inform; 2005; 111():263-9. PubMed ID: 15718741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.