These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15458263)

  • 1. [The influence of the potential dependence of the amplitude of postsynaptic potentials on rhythmic processes of bioelectric activity of the cerebral cortex].
    Bakharev BV; Zhadin MN
    Biofizika; 2004; 49(4):747-55. PubMed ID: 15458263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rhythmic bioelectrical activity of the cerebral cortex analyzed with allowance for the nonlinear voltage dependence of excitatory postsynaptic potentials induced by neocortical neurons].
    Bakharev BV
    Biofizika; 2008; 53(5):874-8. PubMed ID: 18954018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rhythmical processes in the cerebral cortex bioelectrical activity in arousal reaction: qualitative nonlinear analysis involving refractoriness].
    Bakharev BV; Zhadin MN; Agladze NN
    Biofizika; 2001; 46(4):715-23. PubMed ID: 11558385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of inhibitory-inhibitory connections and the form of postsynaptic potentials on the formation of rhythmic processes in the cerebral cortex: analysis of the approximate equation of the electroencephalogram].
    Bakharev BV; Zhadin MN
    Biofizika; 1997; 42(1):214-22. PubMed ID: 9181794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatially continuous mean field theory of electrocortical activity.
    Liley DT; Cadusch PJ; Dafilis MP
    Network; 2002 Feb; 13(1):67-113. PubMed ID: 11878285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ultraslow processes of the brain and liver in studying normal intersystem interactions and in terminal states].
    Iliukhina VA; Khabaeva ZG
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jul; 70(7):921-37. PubMed ID: 6489567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of sleep spindles and spike and wave discharges using a novel method for the calculation of field potentials in rats.
    Sargsyan A; Sitnikova E; Melkonyan A; Mkrtchian H; van Luijtelaar G
    J Neurosci Methods; 2007 Aug; 164(1):161-76. PubMed ID: 17531326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice.
    Poulet JF; Petersen CC
    Nature; 2008 Aug; 454(7206):881-5. PubMed ID: 18633351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between mind, brain, and seizures.
    Fenwick PB
    Epilepsia; 1992; 33 Suppl 6():S1-6. PubMed ID: 1486829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing functioning of the prefrontal cortical subregions with auditory evoked potentials in sleep-wake cycle.
    Tian S; Hu B; Li P; Zhao Z; Ouyang X; Zhou S; Ma Y
    Neurosci Lett; 2006 Jan; 393(1):7-11. PubMed ID: 16213657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catastrophe theory enables moves to be detected towards and away from self-organization: the example of epileptic seizure onset.
    Cerf R
    Biol Cybern; 2006 Jun; 94(6):459-68. PubMed ID: 16547711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanisms of high frequency oscillations in epilepsy: on the diverse sources of pathological activities.
    Menendez de la Prida L; Trevelyan AJ
    Epilepsy Res; 2011 Dec; 97(3):308-17. PubMed ID: 21482073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks.
    Hasenstaub A; Shu Y; Haider B; Kraushaar U; Duque A; McCormick DA
    Neuron; 2005 Aug; 47(3):423-35. PubMed ID: 16055065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-state membrane potential fluctuations driven by weak pairwise correlations.
    Benucci A; Verschure PF; König P
    Neural Comput; 2004 Nov; 16(11):2351-78. PubMed ID: 15476604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting slow oscillations during sleep potentiates memory.
    Marshall L; Helgadóttir H; Mölle M; Born J
    Nature; 2006 Nov; 444(7119):610-3. PubMed ID: 17086200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility.
    Whalley BJ; Constanti A
    Neuroscience; 2006 Jul; 140(3):939-56. PubMed ID: 16616427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo.
    Rudolph M; Pelletier JG; Paré D; Destexhe A
    J Neurophysiol; 2005 Oct; 94(4):2805-21. PubMed ID: 16014785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of rhythmic processes in the bioelectrical activity of the cerebral cortex].
    Zhadin MN
    Biofizika; 1994; 39(1):129-47. PubMed ID: 8161583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse.
    Zhang J; Han VZ; Meek J; Bell CC
    J Neurophysiol; 2007 Mar; 97(3):2191-203. PubMed ID: 17229820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.