BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15458316)

  • 21. Ploidy in cyanobacteria.
    Griese M; Lange C; Soppa J
    FEMS Microbiol Lett; 2011 Oct; 323(2):124-31. PubMed ID: 22092711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems.
    Xu M; Bernát G; Singh A; Mi H; Rögner M; Pakrasi HB; Ogawa T
    Plant Cell Physiol; 2008 Nov; 49(11):1672-7. PubMed ID: 18784196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of trace metal availability on coccolithophorid calcification.
    Schulz KG; Zondervan I; Gerringa LJ; Timmermans KR; Veldhuis MJ; Riebesell U
    Nature; 2004 Aug; 430(7000):673-6. PubMed ID: 15295599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH.
    Antal TK; Lindblad P
    J Appl Microbiol; 2005; 98(1):114-20. PubMed ID: 15610423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring cytosolic pH of carboxysome-deficient cells of Synechocystis sp. PCC 6803 using fluorescence analysis.
    Berry S; Fischer JH; Kruip J; Hauser M; Wildner GF
    Plant Biol (Stuttg); 2005 Jul; 7(4):342-7. PubMed ID: 16025406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The gap3 gene of Synechococcus PCC 7942 is induced during adaptation to low CO2 concentrations].
    Koksharova OA; Liaud MF; Cerff R
    Mikrobiologiia; 2004; 73(3):393-7. PubMed ID: 15315234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of pH and Carbon Source on Synechococcus PCC 7002 Cultivation: Biomass and Carbohydrate Production with Different Strategies for pH Control.
    De Farias Silva CE; Sforza E; Bertucco A
    Appl Biochem Biotechnol; 2017 Feb; 181(2):682-698. PubMed ID: 27623816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling.
    Sivakumar V; Wang R; Hastings G
    Biochemistry; 2005 Feb; 44(6):1880-93. PubMed ID: 15697214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of H+ and calcium ions on surface functional groups of Synechococcus PCC 7942 cells.
    Dittrich M; Sibler S
    Langmuir; 2006 Jun; 22(12):5435-42. PubMed ID: 16732674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite "leaves".
    Bernal OI; Mooney CB; Flickinger MC
    Biotechnol Bioeng; 2014 Oct; 111(10):1993-2008. PubMed ID: 24890862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Microbial geochemical calcium cycle].
    Zavarzin GA
    Mikrobiologiia; 2002; 71(1):5-22. PubMed ID: 11910807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture.
    Sakai S; Nakashimada Y; Inokuma K; Kita M; Okada H; Nishio N
    J Biosci Bioeng; 2005 Mar; 99(3):252-8. PubMed ID: 16233785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate.
    Fathi A; Mohamed T; Claude G; Maurin G; Mohamed BA
    Water Res; 2006 Jun; 40(10):1941-50. PubMed ID: 16650455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection of native freshwater microalgae and cyanobacteria for CO2 biofixation.
    Martínez L; Otero M; Morán A; García AI
    Environ Technol; 2013; 34(21-24):3137-43. PubMed ID: 24617072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mineral CO2 sequestration by environmental biotechnological processes.
    Salek SS; Kleerebezem R; Jonkers HM; Witkamp GJ; van Loosdrecht MC
    Trends Biotechnol; 2013 Mar; 31(3):139-46. PubMed ID: 23384505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synechococcus elongatus PCC 7942 is more tolerant to chromate as compared to Synechocystis sp. PCC 6803.
    Gupta A; Bhagwat SG; Sainis JK
    Biometals; 2013 Apr; 26(2):309-19. PubMed ID: 23430150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Conversion of CO
    Lee HJ; Lee J; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM
    J Agric Food Chem; 2017 Dec; 65(48):10424-10428. PubMed ID: 29068210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Carbon and energetic metabolism of Synechococcus sp. PCC7942 under photoautotrophic conditions].
    Yan R; Zhang Z; Zhu D; Chu J
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1352-9. PubMed ID: 19938478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.
    Kämäräinen J; Knoop H; Stanford NJ; Guerrero F; Akhtar MK; Aro EM; Steuer R; Jones PR
    J Biotechnol; 2012 Nov; 162(1):67-74. PubMed ID: 22954891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp. PCC 6803.
    Schriek S; Aguirre-von-Wobeser E; Nodop A; Becker A; Ibelings BW; Bok J; Staiger D; Matthijs HC; Pistorius EK; Michel KP
    Physiol Plant; 2008 Jul; 133(3):525-43. PubMed ID: 18419737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.