BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 15458409)

  • 1. Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum.
    Jackson KE; Klonis N; Ferguson DJ; Adisa A; Dogovski C; Tilley L
    Mol Microbiol; 2004 Oct; 54(1):109-22. PubMed ID: 15458409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes.
    Palacpac NM; Hiramine Y; Mi-ichi F; Torii M; Kita K; Hiramatsu R; Horii T; Mitamura T
    J Cell Sci; 2004 Mar; 117(Pt 8):1469-80. PubMed ID: 15020675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid transport in Plasmodium.
    Haldar K
    Infect Agents Dis; 1992 Oct; 1(5):254-62. PubMed ID: 1344664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features.
    Hanssen E; Sougrat R; Frankland S; Deed S; Klonis N; Lippincott-Schwartz J; Tilley L
    Mol Microbiol; 2008 Feb; 67(4):703-18. PubMed ID: 18067543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum.
    Abu Bakar N; Klonis N; Hanssen E; Chan C; Tilley L
    J Cell Sci; 2010 Feb; 123(Pt 3):441-50. PubMed ID: 20067995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting malaria parasite proteins to the erythrocyte.
    Templeton TJ; Deitsch KW
    Trends Parasitol; 2005 Sep; 21(9):399-402. PubMed ID: 16046185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum.
    Vielemeyer O; McIntosh MT; Joiner KA; Coppens I
    Mol Biochem Parasitol; 2004 Jun; 135(2):197-209. PubMed ID: 15110461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Falciparum malaria in naturally infected human patients: I. Ultrastructural differences between malaria pigments in intraerythrocytic asexual and sexual forms.
    el-Shoura SM; al-Amari OM
    J Morphol; 1993 Mar; 215(3):201-6. PubMed ID: 8459451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food vacuole targeting and trafficking of falcipain-2, an important cysteine protease of human malaria parasite Plasmodium falciparum.
    Dasaradhi PV; Korde R; Thompson JK; Tanwar C; Nag TC; Chauhan VS; Cowman AF; Mohmmed A; Malhotra P
    Mol Biochem Parasitol; 2007 Nov; 156(1):12-23. PubMed ID: 17698213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Falciparum malaria in naturally infected human patients: VIII. Fine structure of intraerythrocytic asexual forms before and during chloroquine treatment.
    el-Shoura SM
    Appl Parasitol; 1994 Sep; 35(3):207-18. PubMed ID: 7951397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmodium falciparum: protein localization along a novel, lipid-rich tubovesicular membrane network in infected erythrocytes.
    Behari R; Haldar K
    Exp Parasitol; 1994 Nov; 79(3):250-9. PubMed ID: 7957747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria.
    Gligorijevic B; Bennett T; McAllister R; Urbach JS; Roepe PD
    Biochemistry; 2006 Oct; 45(41):12411-23. PubMed ID: 17029397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy.
    Nagao E; Kaneko O; Dvorak JA
    J Struct Biol; 2000 May; 130(1):34-44. PubMed ID: 10806089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional reconstruction of the feeding process of the malaria parasite.
    Slomianny C
    Blood Cells; 1990; 16(2-3):369-78. PubMed ID: 2096983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network.
    Webster GT; de Villiers KA; Egan TJ; Deed S; Tilley L; Tobin MJ; Bambery KR; McNaughton D; Wood BR
    Anal Chem; 2009 Apr; 81(7):2516-24. PubMed ID: 19278236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of the parasitophorous vacuole membrane of the malaria parasite: surface area of the parasitized red cell.
    Dluzewski AR; Zicha D; Dunn GA; Gratzer WB
    Eur J Cell Biol; 1995 Dec; 68(4):446-9. PubMed ID: 8690024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phosphatidylcholine-BODIPY 581/591 conjugate allows mapping of oxidative stress in P. falciparum-infected erythrocytes.
    Fu Y; Klonis N; Suarna C; Maghzal GJ; Stocker R; Tilley L
    Cytometry A; 2009 May; 75(5):390-404. PubMed ID: 19148920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular transport in malaria-infected erythrocytes.
    Taraschi TF
    Novartis Found Symp; 1999; 226():114-20; discussion 121-5. PubMed ID: 10645542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmodium falciparum: role of activated blood monocytes in erythrocyte membrane damage and red cell loss during malaria.
    Mohan K; Dubey ML; Ganguly NK; Mahajan RC
    Exp Parasitol; 1995 Feb; 80(1):54-63. PubMed ID: 7821411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin.
    Kuhn Y; Rohrbach P; Lanzer M
    Cell Microbiol; 2007 Apr; 9(4):1004-13. PubMed ID: 17381432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.