These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15458644)

  • 1. Early- and late-onset blind individuals show supra-normal auditory abilities in far-space.
    Voss P; Lassonde M; Gougoux F; Fortin M; Guillemot JP; Lepore F
    Curr Biol; 2004 Oct; 14(19):1734-8. PubMed ID: 15458644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exceptional ability of blind humans to hear sound motion: implications for the emergence of auditory space.
    Lewald J
    Neuropsychologia; 2013 Jan; 51(1):181-6. PubMed ID: 23178211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial auditory compensation in early-blind humans: involvement of eye movements and/or attention orienting?
    Després O; Candas V; Dufour A
    Neuropsychologia; 2005; 43(13):1955-62. PubMed ID: 16168735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory spatial representations of the world are compressed in blind humans.
    Kolarik AJ; Pardhan S; Cirstea S; Moore BC
    Exp Brain Res; 2017 Feb; 235(2):597-606. PubMed ID: 27837259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A positron emission tomography study during auditory localization by late-onset blind individuals.
    Voss P; Gougoux F; Lassonde M; Zatorre RJ; Lepore F
    Neuroreport; 2006 Mar; 17(4):383-8. PubMed ID: 16514363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind subjects process auditory spectral cues more efficiently than sighted individuals.
    Doucet ME; Guillemot JP; Lassonde M; Gagné JP; Leclerc C; Lepore F
    Exp Brain Res; 2005 Jan; 160(2):194-202. PubMed ID: 15309355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trade-off in the sound localization abilities of early blind individuals between the horizontal and vertical planes.
    Voss P; Tabry V; Zatorre RJ
    J Neurosci; 2015 Apr; 35(15):6051-6. PubMed ID: 25878278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional sound-localization behavior of early-blind humans.
    Zwiers MP; Van Opstal AJ; Cruysberg JR
    Exp Brain Res; 2001 Sep; 140(2):206-22. PubMed ID: 11521153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced self-localization by auditory cues in blind humans.
    Després O; Boudard D; Candas V; Dufour A
    Disabil Rehabil; 2005 Jul; 27(13):753-9. PubMed ID: 16096227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of years of blindness on neural circuits underlying auditory spatial representation.
    Amadeo MB; Campus C; Gori M
    Neuroimage; 2019 May; 191():140-149. PubMed ID: 30710679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early visual deprivation prompts the use of body-centered frames of reference for auditory localization.
    Vercillo T; Tonelli A; Gori M
    Cognition; 2018 Jan; 170():263-269. PubMed ID: 29096327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects.
    Collignon O; Lassonde M; Lepore F; Bastien D; Veraart C
    Cereb Cortex; 2007 Feb; 17(2):457-65. PubMed ID: 16581983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory Space Perception in the Blind: Horizontal Sound Localization in Acoustically Simple and Complex Situations.
    Feierabend M; Karnath HO; Lewald J
    Perception; 2019 Nov; 48(11):1039-1057. PubMed ID: 31462156
    [No Abstract]   [Full Text] [Related]  

  • 14. Brain functional reorganization in early blind humans revealed by auditory event-related potentials.
    Leclerc C; Saint-Amour D; Lavoie ME; Lassonde M; Lepore F
    Neuroreport; 2000 Feb; 11(3):545-50. PubMed ID: 10718312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task.
    Voss P; Gougoux F; Zatorre RJ; Lassonde M; Lepore F
    Neuroimage; 2008 Apr; 40(2):746-758. PubMed ID: 18234523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved selective and divided spatial attention in early blind subjects.
    Collignon O; Renier L; Bruyer R; Tranduy D; Veraart C
    Brain Res; 2006 Feb; 1075(1):175-82. PubMed ID: 16460716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extent of visual deficit and auditory spatial compensation: evidence from self-positioning from auditory cues.
    Després O; Candas V; Dufour A
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):444-7. PubMed ID: 15820651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early but not late-blindness leads to enhanced auditory perception.
    Wan CY; Wood AG; Reutens DC; Wilson SJ
    Neuropsychologia; 2010 Jan; 48(1):344-8. PubMed ID: 19703481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound lateralization test in adolescent blind individuals.
    Yabe T; Kaga K
    Neuroreport; 2005 Jun; 16(9):939-42. PubMed ID: 15931065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved auditory spatial tuning in blind humans.
    Röder B; Teder-Sälejärvi W; Sterr A; Rösler F; Hillyard SA; Neville HJ
    Nature; 1999 Jul; 400(6740):162-6. PubMed ID: 10408442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.