BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15459100)

  • 1. New roles for FoxH1 in patterning the early embryo.
    Kofron M; Puck H; Standley H; Wylie C; Old R; Whitman M; Heasman J
    Development; 2004 Oct; 131(20):5065-78. PubMed ID: 15459100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation.
    Pogoda HM; Solnica-Krezel L; Driever W; Meyer D
    Curr Biol; 2000 Sep; 10(17):1041-9. PubMed ID: 10996071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3.
    Houston DW; Kofron M; Resnik E; Langland R; Destree O; Wylie C; Heasman J
    Development; 2002 Sep; 129(17):4015-25. PubMed ID: 12163405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse.
    Hoodless PA; Pye M; Chazaud C; Labbé E; Attisano L; Rossant J; Wrana JL
    Genes Dev; 2001 May; 15(10):1257-71. PubMed ID: 11358869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish.
    Zhang C; Basta T; Hernandez-Lagunas L; Simpson P; Stemple DL; Artinger KB; Klymkowsky MW
    Dev Biol; 2004 Sep; 273(1):23-37. PubMed ID: 15302595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Lim-1 gene is mediated through conserved FAST-1/FoxH1 sites in the first intron.
    Watanabe M; Rebbert ML; Andreazzoli M; Takahashi N; Toyama R; Zimmerman S; Whitman M; Dawid IB
    Dev Dyn; 2002 Dec; 225(4):448-56. PubMed ID: 12454922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation.
    Zhang C; Basta T; Jensen ED; Klymkowsky MW
    Development; 2003 Dec; 130(23):5609-24. PubMed ID: 14522872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foxh1 Occupies cis-Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program.
    Charney RM; Forouzmand E; Cho JS; Cheung J; Paraiso KD; Yasuoka Y; Takahashi S; Taira M; Blitz IL; Xie X; Cho KW
    Dev Cell; 2017 Mar; 40(6):595-607.e4. PubMed ID: 28325473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xrel3/XrelA attenuates β-catenin-mediated transcription during mesoderm formation in Xenopus embryos.
    Kennedy MW; Kao KR
    Biochem J; 2011 Apr; 435(1):247-57. PubMed ID: 21214516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula.
    Hilton E; Rex M; Old R
    Mech Dev; 2003 Oct; 120(10):1127-38. PubMed ID: 14568102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the homeobox gene Mixl1 by TGF-beta and FoxH1.
    Hart AH; Willson TA; Wong M; Parker K; Robb L
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1361-9. PubMed ID: 15982639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing of endogenous activin-like signals and regional specification of the Xenopus embryo.
    Lee MA; Heasman J; Whitman M
    Development; 2001 Aug; 128(15):2939-52. PubMed ID: 11532917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zygotic VegT is required for Xenopus paraxial mesoderm formation and is regulated by Nodal signaling and Eomesodermin.
    Fukuda M; Takahashi S; Haramoto Y; Onuma Y; Kim YJ; Yeo CY; Ishiura S; Asashima M
    Int J Dev Biol; 2010; 54(1):81-92. PubMed ID: 20013651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes.
    Rex M; Hilton E; Old R
    Int J Dev Biol; 2002 Mar; 46(2):217-26. PubMed ID: 11934150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse.
    Yamamoto M; Meno C; Sakai Y; Shiratori H; Mochida K; Ikawa Y; Saijoh Y; Hamada H
    Genes Dev; 2001 May; 15(10):1242-56. PubMed ID: 11358868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program.
    Chiu WT; Charney Le R; Blitz IL; Fish MB; Li Y; Biesinger J; Xie X; Cho KW
    Development; 2014 Dec; 141(23):4537-47. PubMed ID: 25359723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction.
    Kunwar PS; Zimmerman S; Bennett JT; Chen Y; Whitman M; Schier AF
    Development; 2003 Dec; 130(23):5589-99. PubMed ID: 14522874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin.
    Slagle CE; Aoki T; Burdine RD
    PLoS Genet; 2011 May; 7(5):e1002072. PubMed ID: 21637786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of maternal CREB in early embryogenesis of Xenopus laevis.
    Sundaram N; Tao Q; Wylie C; Heasman J
    Dev Biol; 2003 Sep; 261(2):337-52. PubMed ID: 14499645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.