BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15459337)

  • 1. Insertion of the cytochrome b5 heme-binding loop into an SH3 domain. Effects on structure and stability, and clues about the cytochrome's architecture.
    Knappenberger JA; Kraemer-Pecore CM; Lecomte JT
    Protein Sci; 2004 Nov; 13(11):2899-908. PubMed ID: 15459337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loop anchor modification causes the population of an alternative native state in an SH3-like domain.
    Knappenberger JA; Lecomte JT
    Protein Sci; 2007 May; 16(5):863-79. PubMed ID: 17456740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The solution structure of photosystem I accessory protein E from the cyanobacterium Nostoc sp. strain PCC 8009.
    Mayer KL; Shen G; Bryant DA; Lecomte JT; Falzone CJ
    Biochemistry; 1999 Oct; 38(41):13736-46. PubMed ID: 10521281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and dynamic perturbations induced by heme binding in cytochrome b5.
    Falzone CJ; Wang Y; Vu BC; Scott NL; Bhattacharya S; Lecomte JT
    Biochemistry; 2001 Apr; 40(15):4879-91. PubMed ID: 11294656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A relationship between heme binding and protein stability in cytochrome b5.
    Mukhopadhyay K; Lecomte JT
    Biochemistry; 2004 Sep; 43(38):12227-36. PubMed ID: 15379561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.
    Storch EM; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5054-64. PubMed ID: 10213608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design challenges for hemoproteins: the solution structure of apocytochrome b5.
    Falzone CJ; Mayer MR; Whiteman EL; Moore CD; Lecomte JT
    Biochemistry; 1996 May; 35(21):6519-26. PubMed ID: 8639599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural propensities in the heme binding region of apocytochrome b5. II. Heme conjugates.
    Davis RB; Lecomte JT
    Biopolymers; 2008; 90(4):556-66. PubMed ID: 18398854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural propensities in the heme binding region of apocytochrome b5. I. Free peptides.
    Davis RB; Lecomte JT
    Biopolymers; 2008; 90(4):544-55. PubMed ID: 18398853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A test of the relationship between sequence and structure in proteins: excision of the heme binding site in apocytochrome b5.
    Constans AJ; Mayer MR; Sukits SF; Lecomte JT
    Protein Sci; 1998 Sep; 7(9):1983-93. PubMed ID: 9761479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains.
    Falzone CJ; Kao YH; Zhao J; Bryant DA; Lecomte JT
    Biochemistry; 1994 May; 33(20):6052-62. PubMed ID: 8193119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase.
    Barber MJ; Quinn GB
    Protein Expr Purif; 2001 Nov; 23(2):348-58. PubMed ID: 11676611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functions of fluctuation in the heme-binding loops of cytochrome b5 revealed in the process of heme incorporation.
    Ihara M; Takahashi S; Ishimori K; Morishima I
    Biochemistry; 2000 May; 39(20):5961-70. PubMed ID: 10821667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of oxidized rat microsomal cytochrome b5 in the presence of 2 M guanidinium chloride: monitoring the early steps in protein unfolding.
    Arnesano F; Banci L; Bertini I; Koulougliotis D
    Biochemistry; 1998 Dec; 37(48):17082-92. PubMed ID: 9836603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and thermodynamic encoding in the sequence of rat microsomal cytochrome b(5).
    Lecomte JT; Mukhopadhyay K; Pond MP
    Biopolymers; 2008 May; 89(5):428-42. PubMed ID: 18041061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain.
    Casares S; López-Mayorga O; Vega MC; Cámara-Artigas A; Conejero-Lara F
    Proteins; 2007 May; 67(3):531-47. PubMed ID: 17330285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational stability of cytochrome b5, enhanced green fluorescent protein, and their fusion protein Hmwb5-EGFP.
    Yantsevich AV; Gilep AA; Usanov SA
    Biochemistry (Mosc); 2009 May; 74(5):518-27. PubMed ID: 19538125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mutation at valine 61 on the three-dimensional structure, stability, and redox potential of cytochrome b5.
    Xue LL; Wang YH; Xie Y; Yao P; Wang WH; Qian W; Huang ZX; Wu J; Xia ZX
    Biochemistry; 1999 Sep; 38(37):11961-72. PubMed ID: 10508399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.