These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15459647)

  • 21. The impact of LuxF on light intensity in bacterial bioluminescence.
    Brodl E; Csamay A; Horn C; Niederhauser J; Weber H; Macheroux P
    J Photochem Photobiol B; 2020 Jun; 207():111881. PubMed ID: 32325406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon.
    Swartzman A; Kapoor S; Graham AF; Meighen EA
    J Bacteriol; 1990 Dec; 172(12):6797-802. PubMed ID: 2254256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new lux gene in bioluminescent bacteria codes for a protein homologous to the bacterial luciferase subunits.
    Soly RR; Mancini JA; Ferri SR; Boylan M; Meighen EA
    Biochem Biophys Res Commun; 1988 Aug; 155(1):351-8. PubMed ID: 3415691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Cloning and expression of the lux-operon of Photorhabdus luminescens, strain Zm1: nucleotide sequence of luxAB genes and basic properties of luciferase].
    Manukhov IV; Rastorguev SM; Eroshnikov GE; Zarubina AP; Zavil'gel'skiĭ GB
    Genetika; 2000 Mar; 36(3):322-30. PubMed ID: 10779906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Quantitative criteria for the estimation of the effectiveness of bioluminescence expression in natural and transgenic luminescent bacteria].
    Gusev AA; Kargatova TV; Medvedeva SE; Popova LIu
    Biofizika; 2008; 53(5):836-41. PubMed ID: 18954013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of lumazine protein, an optical transponder of luminescent bacteria.
    Chatwell L; Illarionova V; Illarionov B; Eisenreich W; Huber R; Skerra A; Bacher A; Fischer M
    J Mol Biol; 2008 Sep; 382(1):44-55. PubMed ID: 18602927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group.
    Ast JC; Dunlap PV
    Environ Microbiol; 2005 Oct; 7(10):1641-54. PubMed ID: 16156737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes.
    Swartzman E; Miyamoto C; Graham A; Meighen E
    J Biol Chem; 1990 Feb; 265(6):3513-7. PubMed ID: 2303459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Fluorescent Bacteria with
    Lim SJ; Choi M; Yun I; Lee S; Chang N; Lee CY
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA
    FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The lumazine protein-encoding gene in Photobacterium leiognathi is linked to the lux operon.
    Lin JW; Chao YF; Weng SF
    Gene; 1993 Apr; 126(1):153-4. PubMed ID: 8472956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The lumazine protein gene in Photobacterium phosphoreum is linked to the lux operon.
    Prasher DC; O'Kane D; Lee J; Woodward B
    Nucleic Acids Res; 1990 Nov; 18(21):6450. PubMed ID: 2243804
    [No Abstract]   [Full Text] [Related]  

  • 33. Regulation of Bioluminescence in Photobacterium leiognathi Strain KNH6.
    Dunn AK; Rader BA; Stabb EV; Mandel MJ
    J Bacteriol; 2015 Dec; 197(23):3676-85. PubMed ID: 26350139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi.
    Byrne GA; Russell DA; Chen X; Meijer WG
    J Bacteriol; 2007 Jul; 189(14):5082-9. PubMed ID: 17496078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of Hg2+ on the bioluminescence of Photobacterium leiognathi.
    Li M; Wang J; Lin H
    Luminescence; 2013; 28(3):368-71. PubMed ID: 22777900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Phenotypic expression of a 100-pair nucleotide deletion in the regulatory region of the Bacillus subtilis riboflavin operon].
    Kreneva RA; Gusarov II; Kozlov IuI; Perumov DA
    Genetika; 1997 May; 33(5):599-603. PubMed ID: 9273316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonbioluminescent strains of Photobacterium phosphoreum produce the cell-to-cell communication signal N-(3-Hydroxyoctanoyl)homoserine lactone.
    Flodgaard LR; Dalgaard P; Andersen JB; Nielsen KF; Givskov M; Gram L
    Appl Environ Microbiol; 2005 Apr; 71(4):2113-20. PubMed ID: 15812045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limited geographic distribution of certain strains of the bioluminescent symbiont Photobacterium leiognathi.
    Urbanczyk H; Kiwaki N; Furukawa T; Iwatsuki Y
    FEMS Microbiol Ecol; 2012 Aug; 81(2):355-63. PubMed ID: 22404110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemistry and genetics of bacterial bioluminescence.
    Dunlap P
    Adv Biochem Eng Biotechnol; 2014; 144():37-64. PubMed ID: 25084994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relationship between the secondary structure and the regulatory activity of the leader region of the riboflavin biosynthesis operon in Bacillus subtilis].
    Mironov AS; Karelov DV; Solov'eva IM; Eremina SIu; Errais-Lopes L; Kreneva RA; Perumov DA
    Genetika; 2008 Apr; 44(4):467-73. PubMed ID: 18666549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.