These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15459801)

  • 1. Raman piezo-spectroscopic analysis of natural and synthetic biomaterials.
    Pezzotti G
    Anal Bioanal Chem; 2005 Feb; 381(3):577-90. PubMed ID: 15459801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints.
    Pezzotti G; Porporati AA
    J Biomed Opt; 2004; 9(2):372-84. PubMed ID: 15065905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress microscopy and confocal Raman imaging of load-bearing surfaces in artificial hip joints.
    Pezzotti G
    Expert Rev Med Devices; 2007 Mar; 4(2):165-89. PubMed ID: 17359223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.
    Pezzotti G; Sakakura S
    J Biomed Mater Res A; 2003 May; 65(2):229-36. PubMed ID: 12734817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of mechanical stress on the Raman and infrared bands of hydroxylapatite: A quantum mechanical first principle investigation.
    Ulian G; Valdrè G
    J Mech Behav Biomed Mater; 2018 Jan; 77():683-692. PubMed ID: 29102893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman Spectroscopy Methods to Characterize the Mechanical Response of Soft Biomaterials.
    Zhou H; Simmons CS; Sarntinoranont M; Subhash G
    Biomacromolecules; 2020 Sep; 21(9):3485-3497. PubMed ID: 32833438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of vibrational spectroscopy to the study of mineralized tissues (review).
    Carden A; Morris MD
    J Biomed Opt; 2000 Jul; 5(3):259-68. PubMed ID: 10958610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface toughness of silicon nitride bioceramics: I, Raman spectroscopy-assisted micromechanics.
    Pezzotti G; Enomoto Y; Zhu W; Boffelli M; Marin E; McEntire BJ
    J Mech Behav Biomed Mater; 2016 Feb; 54():328-45. PubMed ID: 26522613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.
    Pezzotti G; Zhu W; Boffelli M; Adachi T; Ichioka H; Yamamoto T; Marunaka Y; Kanamura N
    Anal Bioanal Chem; 2015 May; 407(12):3325-42. PubMed ID: 25673243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An introduction to the biomechanics and biomaterials of bone, joints, and implants.
    Pugh J
    Bull Hosp Joint Dis; 1976 Oct; 37(2):124-48. PubMed ID: 1028511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface toughness of silicon nitride bioceramics: II, Comparison with commercial oxide materials.
    McEntire BJ; Enomoto Y; Zhu W; Boffelli M; Marin E; Pezzotti G
    J Mech Behav Biomed Mater; 2016 Feb; 54():346-59. PubMed ID: 26437609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomedical engineering and materials for orthopaedic implants.
    Hastings GW
    J Phys E; 1980 Jun; 13(6):599-607. PubMed ID: 6993661
    [No Abstract]   [Full Text] [Related]  

  • 13. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of compromised cortical bone on implant load distribution.
    Akça K; Fanuscu MI; Caputo AA
    J Prosthodont; 2008 Dec; 17(8):616-20. PubMed ID: 18798784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered bead ceramic composite coating for hip prostheses: experimental studies and preliminary clinical results.
    Pizzoferrato A; Toni A; Sudanese A; Ciapetti G; Tinti A; Venturini A
    J Biomed Mater Res; 1988 Dec; 22(12):1181-202. PubMed ID: 3235458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants.
    Çaglar A; Bal BT; Karakoca S; Aydın C; Yılmaz H; Sarısoy S
    Int J Oral Maxillofac Implants; 2011; 26(5):961-9. PubMed ID: 22010077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomaterials in bone repair].
    Puska M; Aho AJ; Vallittu PK
    Duodecim; 2013; 129(5):489-96. PubMed ID: 23520892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prosthesis design and impression techniques on human cortical bone strain around oral implants under load.
    Akça K; Kokat AM; Sahin S; Iplikcioglu H; Cehreli MC
    Med Eng Phys; 2009 Sep; 31(7):758-63. PubMed ID: 19269878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium phosphate materials containing alumina: Raman spectroscopical, histological, and ultrastructural study.
    Bertoluzza A; Simoni R; Tinti A; Morocutti M; Ottani V; Ruggeri A
    J Biomed Mater Res; 1991 Jan; 25(1):23-38. PubMed ID: 2019610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study.
    Tabassum A; Meijer GJ; Wolke JG; Jansen JA
    Clin Oral Implants Res; 2010 Feb; 21(2):213-20. PubMed ID: 20070754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.