BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15459946)

  • 21. Paracellular drug transport across intestinal epithelia: influence of charge and induced water flux.
    Karlsson J; Ungell A; Gråsjö J; Artursson P
    Eur J Pharm Sci; 1999 Oct; 9(1):47-56. PubMed ID: 10493996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.
    Miller JM; Dahan A; Gupta D; Varghese S; Amidon GL
    J Control Release; 2009 Jul; 137(1):31-7. PubMed ID: 19264104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.
    Dahan A; Amidon GL
    Mol Pharm; 2009; 6(1):19-28. PubMed ID: 19248230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ artificial membrane permeation assay under hydrodynamic control: correlation between drug in vitro permeability and fraction absorbed in humans.
    Velický M; Tam KY; Dryfe RA
    Eur J Pharm Sci; 2011 Oct; 44(3):299-309. PubMed ID: 21864679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport evaluation of salicylic acid and structurally related compounds across Caco-2 cell monolayers and artificial PAMPA membranes.
    Koljonen M; Rousu K; Cierny J; Kaukonen AM; Hirvonen J
    Eur J Pharm Biopharm; 2008 Oct; 70(2):531-8. PubMed ID: 18582575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.
    Oja M; Maran U
    SAR QSAR Environ Res; 2015; 26(7-9):701-19. PubMed ID: 26383235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability.
    Mensch J; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P
    Eur J Pharm Biopharm; 2010 Mar; 74(3):495-502. PubMed ID: 20067834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs.
    di Cagno M; Bibi HA; Bauer-Brandl A
    Eur J Pharm Sci; 2015 Jun; 73():29-34. PubMed ID: 25840123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability.
    Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers.
    Inokuchi H; Takei T; Aikawa K; Shimizu M
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):328-34. PubMed ID: 19202294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the artificial membrane permeability of drugs by digital simulation.
    Nakamura M; Osakai T
    Eur J Pharm Sci; 2016 Aug; 91():154-61. PubMed ID: 27334569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane permeability in the gastrointestinal tract: the interplay between microclimate pH and transporters.
    Kristl A
    Chem Biodivers; 2009 Nov; 6(11):1923-32. PubMed ID: 19937830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH-permeability profiles for drug substances: Experimental detection, comparison with human intestinal absorption and modelling.
    Oja M; Maran U
    Eur J Pharm Sci; 2018 Oct; 123():429-440. PubMed ID: 30100533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absorption enhancement in intestinal epithelial Caco-2 monolayers by sodium caprate: assessment of molecular weight dependence and demonstration of transport routes.
    Lindmark T; Schipper N; Lazorová L; de Boer AG; Artursson P
    J Drug Target; 1998; 5(3):215-23. PubMed ID: 9606011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells.
    Artursson P; Magnusson C
    J Pharm Sci; 1990 Jul; 79(7):595-600. PubMed ID: 2118955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.
    Berginc K; Zakelj S; Levstik L; Ursic D; Kristl A
    Eur J Pharm Biopharm; 2007 May; 66(2):281-5. PubMed ID: 17129714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine).
    Smetanova L; Stetinova V; Kholova D; Kvetina J; Smetana J; Svoboda Z
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():101-5. PubMed ID: 20027153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of the skin permeability of topical drugs using in silico and in vitro models.
    Alonso C; Carrer V; Espinosa S; Zanuy M; Córdoba M; Vidal B; Domínguez M; Godessart N; Coderch L; Pont M
    Eur J Pharm Sci; 2019 Aug; 136():104945. PubMed ID: 31163216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds.
    Masungi C; Borremans C; Willems B; Mensch J; Van Dijck A; Augustijns P; Brewster ME; Noppe M
    J Pharm Sci; 2004 Oct; 93(10):2507-21. PubMed ID: 15349960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.