BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15460172)

  • 1. Application of an empiric Bayesian data mining algorithm to reports of pancreatitis associated with atypical antipsychotics.
    Hauben M
    Pharmacotherapy; 2004 Sep; 24(9):1122-9. PubMed ID: 15460172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atypical antipsychotics and pituitary tumors: a pharmacovigilance study.
    Szarfman A; Tonning JM; Levine JG; Doraiswamy PM
    Pharmacotherapy; 2006 Jun; 26(6):748-58. PubMed ID: 16716128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atypical antipsychotic drugs and diabetes mellitus in the US Food and Drug Administration Adverse Event database: a systematic Bayesian signal detection analysis.
    Baker RA; Pikalov A; Tran QV; Kremenets T; Arani RB; Doraiswamy PM
    Psychopharmacol Bull; 2009; 42(1):11-31. PubMed ID: 19204649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antipsychotics, glycemic disorders, and life-threatening diabetic events: a Bayesian data-mining analysis of the FDA adverse event reporting system (1968-2004).
    DuMouchel W; Fram D; Yang X; Mahmoud RA; Grogg AL; Engelhart L; Ramaswamy K
    Ann Clin Psychiatry; 2008; 20(1):21-31. PubMed ID: 18297583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pancreatitis associated with atypical antipsychotics: from the Food and Drug Administration's MedWatch surveillance system and published reports.
    Koller EA; Cross JT; Doraiswamy PM; Malozowski SN
    Pharmacotherapy; 2003 Sep; 23(9):1123-30. PubMed ID: 14524644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database.
    Szarfman A; Machado SG; O'Neill RT
    Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data mining for prospective early detection of safety signals in the Vaccine Adverse Event Reporting System (VAERS): a case study of febrile seizures after a 2010-2011 seasonal influenza virus vaccine.
    Martin D; Menschik D; Bryant-Genevier M; Ball R
    Drug Saf; 2013 Jul; 36(7):547-56. PubMed ID: 23657824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety related drug-labelling changes: findings from two data mining algorithms.
    Hauben M; Reich L
    Drug Saf; 2004; 27(10):735-44. PubMed ID: 15350157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacovigilance in the 21st century: new systematic tools for an old problem.
    Szarfman A; Tonning JM; Doraiswamy PM
    Pharmacotherapy; 2004 Sep; 24(9):1099-104. PubMed ID: 15460169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are all quantitative postmarketing signal detection methods equal? Performance characteristics of logistic regression and Multi-item Gamma Poisson Shrinker.
    Berlin C; Blanch C; Lewis DJ; Maladorno DD; Michel C; Petrin M; Sarp S; Close P
    Pharmacoepidemiol Drug Saf; 2012 Jun; 21(6):622-30. PubMed ID: 21994119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Substandard Medicines via Disproportionality Analysis of Individual Case Safety Reports.
    Trippe ZA; Brendani B; Meier C; Lewis D
    Drug Saf; 2017 Apr; 40(4):293-303. PubMed ID: 28130773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data mining and safety analysis of avatrombopag: a retrospective pharmacovigilance study based on the US food and drug administration's adverse event reporting system.
    Zhu H; Wu M
    Sci Rep; 2024 May; 14(1):11262. PubMed ID: 38760419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endotoxin-like reactions with intravenous gentamicin: results from pharmacovigilance tools under investigation.
    Hauben M; Reich L
    Infect Control Hosp Epidemiol; 2005 Apr; 26(4):391-4. PubMed ID: 15865275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postmarketing surveillance of potentially fatal reactions to oncology drugs: potential utility of two signal-detection algorithms.
    Hauben M; Reich L; Chung S
    Eur J Clin Pharmacol; 2004 Dec; 60(10):747-50. PubMed ID: 15619136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antipsychotics-associated serious adverse events in children: an analysis of the FAERS database.
    Kimura G; Kadoyama K; Brown JB; Nakamura T; Miki I; Nisiguchi K; Sakaeda T; Okuno Y
    Int J Med Sci; 2015; 12(2):135-40. PubMed ID: 25589889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the MedDRA hierarchy on pharmacovigilance data mining results.
    Pearson RK; Hauben M; Goldsmith DI; Gould AL; Madigan D; O'Hara DJ; Reisinger SJ; Hochberg AM
    Int J Med Inform; 2009 Dec; 78(12):e97-e103. PubMed ID: 19230751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Expression Profile of Extrapyramidal Symptoms Due to Antipsychotics by Data Mining of Japanese Adverse Drug Event Report (JADER) Database.
    Kose E; Uno K; Hayashi H
    Yakugaku Zasshi; 2017; 137(1):111-120. PubMed ID: 28049887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing taxane-associated adverse events using the FDA adverse event reporting system database.
    Lao DH; Chen Y; Fan J; Zhang JZ
    Chin Med J (Engl); 2021 Jun; 134(12):1471-1476. PubMed ID: 34074841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.