These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 15461170)
1. Emissions of air pollutants from household stoves: honeycomb coal versus coal cake. Ge S; Xu X; Chow JC; Watson J; Sheng Q; Liu W; Bai Z; Zhu T; Zhang J Environ Sci Technol; 2004 Sep; 38(17):4612-8. PubMed ID: 15461170 [TBL] [Abstract][Full Text] [Related]
2. Differences in chemical composition of PM Lai A; Shan M; Deng M; Carter E; Yang X; Baumgartner J; Schauer J Chemosphere; 2019 Oct; 233():852-861. PubMed ID: 31340411 [TBL] [Abstract][Full Text] [Related]
3. Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Zhi G; Chen Y; Feng Y; Xiong S; Li J; Zhang G; Sheng G; Fu J Environ Sci Technol; 2008 May; 42(9):3310-5. PubMed ID: 18522111 [TBL] [Abstract][Full Text] [Related]
4. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China. Liu Y; Zhang Y; Li C; Bai Y; Zhang D; Xue C; Liu G Environ Pollut; 2018 Sep; 240():661-669. PubMed ID: 29775943 [TBL] [Abstract][Full Text] [Related]
5. [Investigation on the Emission Difference of Air Pollutants from Common Residential Coal Stoves and Suggestions for Emission Reduction]. Zhang YC; Xue CL; Liu J; Zhong LH; Xue YF Huan Jing Ke Xue; 2020 Oct; 41(10):4462-4469. PubMed ID: 33124378 [TBL] [Abstract][Full Text] [Related]
6. Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products. Li Q; Qi J; Jiang J; Wu J; Duan L; Wang S; Hao J Sci Total Environ; 2019 Feb; 650(Pt 1):653-660. PubMed ID: 30212694 [TBL] [Abstract][Full Text] [Related]
7. Boiler briquette coal versus raw coal: Part I--Stack gas emissions. Ge S; Bai Z; Liu W; Zhu T; Wang T; Qing S; Zhang J J Air Waste Manag Assoc; 2001 Apr; 51(4):524-33. PubMed ID: 11321909 [TBL] [Abstract][Full Text] [Related]
8. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
9. Investigating the relationship between mass concentration of particulate matter and reactive oxygen species based on residential coal combustion source tests. Luan M; Zhang T; Li X; Yan C; Sun J; Zhi G; Shen G; Liu X; Zheng M Environ Res; 2022 Sep; 212(Pt D):113499. PubMed ID: 35618007 [TBL] [Abstract][Full Text] [Related]
10. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM Li Z; Jiang J; Ma Z; Fajardo OA; Deng J; Duan L Environ Pollut; 2017 Nov; 230():655-662. PubMed ID: 28715770 [TBL] [Abstract][Full Text] [Related]
11. Characterization of emissions from burning incense. Jetter JJ; Guo Z; McBrian JA; Flynn MR Sci Total Environ; 2002 Aug; 295(1-3):51-67. PubMed ID: 12186292 [TBL] [Abstract][Full Text] [Related]
12. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring. Zhang Y; Bo X; Zhao Y; Nielsen CP Environ Pollut; 2019 Aug; 251():415-424. PubMed ID: 31103001 [TBL] [Abstract][Full Text] [Related]
13. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
14. Personal exposure to PM Li Y; Xu H; Wang J; Ho SSH; He K; Shen Z; Ning Z; Sun J; Li L; Lei R; Zhang T; Lei Y; Yang L; Cao Y; Cao J Chemosphere; 2019 Jul; 227():53-62. PubMed ID: 30981970 [TBL] [Abstract][Full Text] [Related]
15. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions. Ge S; Bai Z; Liu W; Zhu T; Wang T; Qing S; Zhang J J Air Waste Manag Assoc; 2001 Apr; 51(4):524-533. PubMed ID: 28072241 [TBL] [Abstract][Full Text] [Related]
16. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Yang Z; Zhang Y; Liu L; Wang X; Zhang Z Waste Manag; 2016 Apr; 50():213-21. PubMed ID: 26584559 [TBL] [Abstract][Full Text] [Related]
17. Household CO and PM measured as part of a review of China's National Improved Stove Program. Edwards RD; Liu Y; He G; Yin Z; Sinton J; Peabody J; Smith KR Indoor Air; 2007 Jun; 17(3):189-203. PubMed ID: 17542832 [TBL] [Abstract][Full Text] [Related]
18. Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. Du W; Zhu X; Chen Y; Liu W; Wang W; Shen G; Tao S; Jetter JJ Environ Pollut; 2018 Nov; 242(Pt B):1587-1597. PubMed ID: 30097283 [TBL] [Abstract][Full Text] [Related]
19. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Watson JG; Chow JC; Houck JE Chemosphere; 2001 Jun; 43(8):1141-51. PubMed ID: 11368231 [TBL] [Abstract][Full Text] [Related]
20. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions. Ebelt S; Brauer M; Cyrys J; Tuch T; Kreyling WG; Wichmann HE; Heinrich J Environ Health Perspect; 2001 Apr; 109(4):325-33. PubMed ID: 11335179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]