These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15461407)

  • 1. N-ViroTech--a novel process for the treatment of nutrient limited wastewaters.
    Slade AH; Gapes DJ; Stuthridge TR; Anderson SM; Dare PH; Pearson HG; Dennis M
    Water Sci Technol; 2004; 50(3):131-9. PubMed ID: 15461407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient minimisation in the pulp and paper industry: an overview.
    Slade AH; Ellis RJ; vanden Heuvel M; Stuthridge TR
    Water Sci Technol; 2004; 50(3):111-22. PubMed ID: 15461405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.
    Slade AH; Anderson SM; Evans BG
    Water Sci Technol; 2003; 48(8):1-8. PubMed ID: 14682564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance of a nitrogen-fixing SBR.
    Dennis MA; Cotter ML; Slade AH; Gapes DJ
    Water Sci Technol; 2004; 50(10):269-78. PubMed ID: 15656322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of conventional activated sludge and low sludge production strategies for advanced treatment of kraft pulp mill effluent.
    Werker A; Malmqvist A; Welander T
    Water Sci Technol; 2004; 50(3):103-10. PubMed ID: 15461404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full scale implementation of the nutrient limited BAS process at Södra Cell Värö.
    Malmqvist A; Berggren B; Sjölin C; Welander T; Heuts L; Fransén A; Ling D
    Water Sci Technol; 2004; 50(3):123-30. PubMed ID: 15461406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between the theory and reality of full-scale step-feed nutrient removal systems.
    Johnson BR; Goodwin S; Daigger GT; Crawford GV
    Water Sci Technol; 2005; 52(10-11):587-96. PubMed ID: 16459837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BICT biological process for nitrogen and phosphorus removal.
    Huang Y; Li Y; Pan Y
    Water Sci Technol; 2004; 50(6):179-88. PubMed ID: 15537006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of nutrient limitation (nitrogen and phosphorus) on BOD removal from post-coagulated Pinus radiata sulfite pulp and paper mill wastewater in a baffled aerated stabilisation basin-laboratory pilot scale study.
    Dewi R; Van Leeuwen JA; Everson A; Nothrop SC; Chow CW
    Water Sci Technol; 2011; 63(3):491-501. PubMed ID: 21278472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions.
    Béline F; Daumer ML; Loyon L; Pourcher AM; Dabert P; Guiziou F; Peu P
    Water Sci Technol; 2008; 57(12):1909-14. PubMed ID: 18587177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between BOD:N ratio and wastewater treatability in a nitrogen-fixing wastewater treatment system.
    Slade AH; Thorn GJ; Dennis MA
    Water Sci Technol; 2011; 63(4):627-32. PubMed ID: 21330706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved nutrient removal using in situ continuous on-line sensors with short response time.
    Ingildsen P; Wendelboe H
    Water Sci Technol; 2003; 48(1):95-102. PubMed ID: 12926625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the effluent of small wastewater treatment plants by bacteria reduction and nutrient removal with an algal biofilm.
    Schumacher G; Sekoulov I
    Water Sci Technol; 2003; 48(2):373-80. PubMed ID: 14510233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of separate urine collection on wastewater treatment systems.
    Wilsenach J; van Loosdrecht M
    Water Sci Technol; 2003; 48(1):103-10. PubMed ID: 12926626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exergy analysis of nutrient recovery processes.
    Hellström D
    Water Sci Technol; 2003; 48(1):27-36. PubMed ID: 12926618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of IFAS wastewater treatment processes for biological phosphorus removal.
    Sriwiriyarat T; Randall CW
    Water Res; 2005 Oct; 39(16):3873-84. PubMed ID: 16126245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrients removal in MBRs for municipal wastewater treatment.
    Kraume M; Bracklow U; Vocks M; Drews A
    Water Sci Technol; 2005; 51(6-7):391-402. PubMed ID: 16004001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater.
    Kim D; Kim KY; Ryu HD; Min KK; Lee SI
    Bioresour Technol; 2009 Jul; 100(13):3180-4. PubMed ID: 19269166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.