These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15461407)

  • 21. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring of eutrophication and nutrient limitation in the Izmir Bay (Turkey) before and after Wastewater Treatment Plant.
    Kontas A; Kucuksezgin F; Altay O; Uluturhan E
    Environ Int; 2004 Feb; 29(8):1057-62. PubMed ID: 14680888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance evaluation of physicochemical processes for biologically pre-treated livestock wastewater.
    Hong SW; Choi YS; Kwon G; Park KY
    Water Sci Technol; 2005; 52(10-11):107-15. PubMed ID: 16459782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms).
    Jayaweera MW; Kasturiarachchi JC
    Water Sci Technol; 2004; 50(6):217-25. PubMed ID: 15537010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal.
    Cho E; Molof AH
    J Environ Manage; 2004 Nov; 73(3):183-7. PubMed ID: 15474735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demonstration of enhanced nutrient removal at two full-scale SBR plants.
    Peters M; Newland M; Seviour T; Broom T; Bridle T
    Water Sci Technol; 2004; 50(10):115-20. PubMed ID: 15656303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the performance of the Tyson Foods wastewater treatment plant for nitrogen removal.
    Ubay-Cokgor E; Randall CW; Orhon D
    Water Sci Technol; 2005; 51(11):159-66. PubMed ID: 16114629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study.
    Langergraber G
    Water Sci Technol; 2005; 51(9):213-23. PubMed ID: 16042261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrification of industrial wastewaters with high nitrogen concentration.
    Mycielski R; Krogulska B; Błlaszczyk M
    Acta Microbiol Pol; 1978; 27(4):393-402. PubMed ID: 86288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-line control of biological nutrient removal processes in practice: a cost-benefit analysis.
    Devisscher M; Parmentier G
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):101-8. PubMed ID: 15296143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism.
    Lee J; Kim J; Lee C; Yun Z; Choi E
    Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermittent cyclic process for enhanced biological nutrient removal treating combined chemical laboratory wastewater.
    Tanwar P; Nandy T; Khan R; Biswas R
    Bioresour Technol; 2007 Sep; 98(13):2473-8. PubMed ID: 17070040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics.
    Yang Y; Inamori Y; Ojima H; Machii H; Shimizu Y
    Water Res; 2005 Dec; 39(20):4859-68. PubMed ID: 16316675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From the lab to full-scale SBR operation: treating high strength and variable industrial wastewaters.
    Flapper TG; Ashbolt NJ; Lee AT; O'Neill M
    Water Sci Technol; 2001; 43(3):347-54. PubMed ID: 11381926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus fractionation in membrane-assisted biological nutrient removal processes.
    Kim M; Nakhla G
    Chemosphere; 2009 Aug; 76(9):1283-7. PubMed ID: 19577274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Azolla-Anabaena's behaviour in urban wastewater and artificial media--influence of combined nitrogen.
    Costa ML; Santos MC; Carrapiço F; Pereira AL
    Water Res; 2009 Aug; 43(15):3743-50. PubMed ID: 19559459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatment of mixed municipal and winery wastewaters in a conventional activated sludge process: a case study.
    Brucculeri M; Bolzonella D; Battistoni P; Cecchi F
    Water Sci Technol; 2005; 51(1):89-98. PubMed ID: 15771103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Outcomes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membrane bioreactor (MBR).
    Lesjean B; Gnirss R; Buisson H; Keller S; Tazi-Pain A; Luck F
    Water Sci Technol; 2005; 52(10-11):453-60. PubMed ID: 16459821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.