These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 15461503)
1. Effect of a modification site on the electron-transfer reaction of glucose oxidase hybrids modified with phenothiazine via a poly(ethylene oxide) spacer. Ueki T; Aoki S; Ishii K; Imabayashi S; Watanabe M Langmuir; 2004 Oct; 20(21):9177-83. PubMed ID: 15461503 [TBL] [Abstract][Full Text] [Related]
2. Electron transfer reactions of glucose oxidase at Au111 electrodes modified with phenothiazine derivatives. Nanjo S; Ishii K; Ueki T; Imabayashi S; Watanabe M; Kano K Anal Chem; 2005 Jul; 77(13):4142-7. PubMed ID: 15987120 [TBL] [Abstract][Full Text] [Related]
3. Electrical communication between glucose oxidase and electrodes mediated by phenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface. Ban K; Ueki T; Tamada Y; Saito T; Imabayashi S; Watanabe M Anal Chem; 2003 Feb; 75(4):910-7. PubMed ID: 12622383 [TBL] [Abstract][Full Text] [Related]
4. Temperature-induced reversible change in the redox response in phenothiazine-labeled poly(ethoxyethyl glycidyl ether) and its application to the thermal control of the catalytic reaction of glucose oxidase. Nakadan N; Imabayashi S; Watanabe M Langmuir; 2004 Sep; 20(20):8786-91. PubMed ID: 15379507 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Salimi A; Sharifi E; Noorbakhsh A; Soltanian S Biosens Bioelectron; 2007 Jun; 22(12):3146-53. PubMed ID: 17368016 [TBL] [Abstract][Full Text] [Related]
6. Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. Wu X; Zhao B; Wu P; Zhang H; Cai C J Phys Chem B; 2009 Oct; 113(40):13365-73. PubMed ID: 19746958 [TBL] [Abstract][Full Text] [Related]
7. Effect of core-shell micelle formation on the redox properties of phenothiazine-labeled poly(ethyl glycidy ether)-block-poly(ethylene oxide). Tsuda R; Kaino S; Kokubo H; Imabayashi S; Watanabe M Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):255-9. PubMed ID: 17194577 [TBL] [Abstract][Full Text] [Related]
8. Effect of cast solvent on the electron transfer reaction for poly(ethylene oxide)-modified myoglobin on the electrode in poly(ethylene oxide) oligomers. Kawahara NY; Ohkubo W; Ohno H Bioconjug Chem; 1997; 8(2):244-8. PubMed ID: 9095367 [TBL] [Abstract][Full Text] [Related]
9. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties. Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391 [TBL] [Abstract][Full Text] [Related]
10. Breaking the barrier to fast electron transfer. Demin S; Hall EA Bioelectrochemistry; 2009 Sep; 76(1-2):19-27. PubMed ID: 19351583 [TBL] [Abstract][Full Text] [Related]
11. Targeting glucose oxidase at aspartate and glutamate residues with organic two-electron redox mediators. Battaglini F; Koutroumanis M; English AM; Mikkelsen SR Bioconjug Chem; 1994; 5(5):430-5. PubMed ID: 7849073 [TBL] [Abstract][Full Text] [Related]
12. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption. Murthy R; Shell CE; Grunlan MA Biomaterials; 2009 May; 30(13):2433-9. PubMed ID: 19232435 [TBL] [Abstract][Full Text] [Related]
13. Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Xu FJ; Cai QJ; Li YL; Kang ET; Neoh KG Biomacromolecules; 2005; 6(2):1012-20. PubMed ID: 15762672 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence sensing of glucose using glucose oxidase modified by PVA-pyrene prepared via "click" chemistry. Odaci D; Gacal BN; Gacal B; Timur S; Yagci Y Biomacromolecules; 2009 Oct; 10(10):2928-34. PubMed ID: 19678675 [TBL] [Abstract][Full Text] [Related]
15. Control of bioelectrocatalytic transformations on DNA scaffolds. Piperberg G; Wilner OI; Yehezkeli O; Tel-Vered R; Willner I J Am Chem Soc; 2009 Jul; 131(25):8724-5. PubMed ID: 19505077 [TBL] [Abstract][Full Text] [Related]
16. Interactions of glucose oxidase with various metal polypyridine complexes as mediators of glucose oxidation. Nakabayashi Y; Nakamura K; Kawachi M; Motoyama T; Yamauchi O J Biol Inorg Chem; 2003 Jan; 8(1-2):45-52. PubMed ID: 12459898 [TBL] [Abstract][Full Text] [Related]
17. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Manesh KM; Kim HT; Santhosh P; Gopalan AI; Lee KP Biosens Bioelectron; 2008 Jan; 23(6):771-9. PubMed ID: 17905578 [TBL] [Abstract][Full Text] [Related]
18. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Leskovac V; Trivić S; Wohlfahrt G; Kandrac J; Pericin D Int J Biochem Cell Biol; 2005 Apr; 37(4):731-50. PubMed ID: 15694834 [TBL] [Abstract][Full Text] [Related]
19. Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases. Sekretaryova AN; Vagin MY; Beni V; Turner AP; Karyakin AA Biosens Bioelectron; 2014 Mar; 53():275-82. PubMed ID: 24144558 [TBL] [Abstract][Full Text] [Related]
20. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Cao L; Ye J; Tong L; Tang B Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]