These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 15462436)

  • 1. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trotting, pacing and bounding by a quadruped robot.
    Raibert MH
    J Biomech; 1990; 23 Suppl 1():79-98. PubMed ID: 2081747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
    Park HW; Kim S
    Bioinspir Biomim; 2015 Mar; 10(2):025003. PubMed ID: 25806404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.
    Klaus G; Glette K; Høvin M
    Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy comparison between trot, bound, and gallop using a simple model.
    Nanua P; Waldron KJ
    J Biomech Eng; 1995 Nov; 117(4):466-73. PubMed ID: 8748530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of leg dynamic models for quadrupedal robots with compliant backbone.
    Parra Ricaurte EA; Pareja J; Dominguez S; Rossi C
    Sci Rep; 2022 Aug; 12(1):14579. PubMed ID: 36028739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.
    Huang KJ; Huang CK; Lin PC
    Bioinspir Biomim; 2014 Oct; 9(4):046004. PubMed ID: 25291720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
    Spagna JC; Goldman DI; Lin PC; Koditschek DE; Full RJ
    Bioinspir Biomim; 2007 Mar; 2(1):9-18. PubMed ID: 17671322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A galloping quadruped model using left-right asymmetry in touchdown angles.
    Tanase M; Ambe Y; Aoi S; Matsuno F
    J Biomech; 2015 Sep; 48(12):3383-9. PubMed ID: 26216144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic legs for open-loop control of gram-scale robots.
    St Pierre R; Gao W; Clark JE; Bergbreiter S
    Bioinspir Biomim; 2020 Jul; 15(5):055005. PubMed ID: 32580172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.
    Spitz J; Evstrachin A; Zacksenhouse M
    Bioinspir Biomim; 2015 Aug; 10(5):056005. PubMed ID: 26291076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadrupedal bounding with a segmented flexible torso: passive stability and feedback control.
    Cao Q; Poulakakis I
    Bioinspir Biomim; 2013 Dec; 8(4):046007. PubMed ID: 24166806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.