BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15462446)

  • 1. Development of a biomimetic robotic fish and its control algorithm.
    Yu J; Tan M; Wang S; Chen E
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1798-810. PubMed ID: 15462446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed flow sensing for closed-loop speed control of a flexible fish robot.
    Zhang F; Lagor FD; Yeo D; Washington P; Paley DA
    Bioinspir Biomim; 2015 Oct; 10(6):065001. PubMed ID: 26495855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
    Behbahani SB; Tan X
    Bioinspir Biomim; 2016 May; 11(3):036009. PubMed ID: 27144946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-level motion control for robotic fish to swim in groups: modeling and experiments.
    Li L; Liu A; Wang W; Ravi S; Fu R; Yu J; Xie G
    Bioinspir Biomim; 2019 May; 14(4):046001. PubMed ID: 30875698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent self-tuning of PID control for the robotic testing system for human musculoskeletal joints test.
    Tian L
    Ann Biomed Eng; 2004 Jun; 32(6):899-909. PubMed ID: 15255220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-entrainment to optimal gaits of an underactuated biomimetic swimming robot using adaptive frequency oscillators.
    Alessi A; Accoto D; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3627-30. PubMed ID: 26737078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired pursuit with a swimming robot using feedback control of an internal rotor.
    Free BA; Lee J; Paley DA
    Bioinspir Biomim; 2020 Mar; 15(3):035005. PubMed ID: 32040943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biorobotic pectoral fin for autonomous undersea vehicles.
    Tangorra JL; Davidson SN; Madden PG; Lauder GV; Hunter IW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2726-9. PubMed ID: 17946977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFD based parameter tuning for motion control of robotic fish.
    Tian R; Li L; Wang W; Chang X; Ravi S; Xie G
    Bioinspir Biomim; 2020 Feb; 15(2):026008. PubMed ID: 31935704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFD-based multi-objective controller optimization for soft robotic fish with muscle-like actuation.
    Hess A; Tan X; Gao T
    Bioinspir Biomim; 2020 Mar; 15(3):035004. PubMed ID: 31958782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.