These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 15462448)
1. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion. Arena P; Fortuna L; Frasca M; Sicurella G IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448 [TBL] [Abstract][Full Text] [Related]
2. Bio-inspired design strategies for central pattern generator control in modular robotics. Herrero-Carrón F; Rodríguez FB; Varona P Bioinspir Biomim; 2011 Mar; 6(1):016006. PubMed ID: 21335644 [TBL] [Abstract][Full Text] [Related]
3. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. Liu C; Chen Q; Wang D IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715 [TBL] [Abstract][Full Text] [Related]
4. Neuromorphic walking gait control. Still S; Hepp K; Douglas RJ IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475 [TBL] [Abstract][Full Text] [Related]
5. Central pattern generators for locomotion control in animals and robots: a review. Ijspeert AJ Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958 [TBL] [Abstract][Full Text] [Related]
6. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation. Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Puga-Soberanes HJ; Sotelo-Figueroa MA; Melin P Comput Intell Neurosci; 2016; 2016():5615618. PubMed ID: 27436997 [TBL] [Abstract][Full Text] [Related]
7. An analysis of neural models for walking control. Reeve R; Hallam J IEEE Trans Neural Netw; 2005 May; 16(3):733-42. PubMed ID: 15941000 [TBL] [Abstract][Full Text] [Related]
8. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Ijspeert AJ; Crespi A; Cabelguen JM Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158 [TBL] [Abstract][Full Text] [Related]
9. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search. Krasny DP; Orin DE IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436 [TBL] [Abstract][Full Text] [Related]
10. Chaotic neurodynamics for autonomous agents. Harter D; Kozma R IEEE Trans Neural Netw; 2005 May; 16(3):565-79. PubMed ID: 15940987 [TBL] [Abstract][Full Text] [Related]
11. Sensory feedback in CNN-based central pattern generators. Arena P; Fortuna L; Frasca M; Patane L Int J Neural Syst; 2003 Dec; 13(6):469-78. PubMed ID: 15031855 [TBL] [Abstract][Full Text] [Related]
12. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics. Nurzaman SG; Yu X; Kim Y; Iida F Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228 [TBL] [Abstract][Full Text] [Related]
13. iSpike: a spiking neural interface for the iCub robot. Gamez D; Fidjeland AK; Lazdins E Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339 [TBL] [Abstract][Full Text] [Related]
14. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects. Boyer F; Porez M Bioinspir Biomim; 2015 Mar; 10(2):025007. PubMed ID: 25811531 [TBL] [Abstract][Full Text] [Related]
15. Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller. Lin CM; Chen CH IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):110-23. PubMed ID: 17278565 [TBL] [Abstract][Full Text] [Related]
16. Anticipatory visual perception as a bio-inspired mechanism underlying robot locomotion. Barrera A; Laschi C Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3206-9. PubMed ID: 21096813 [TBL] [Abstract][Full Text] [Related]
17. A brain-like neural network for periodicity analysis. Voutsas K; Langner G; Adamy J; Ochse M IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):12-22. PubMed ID: 15719929 [TBL] [Abstract][Full Text] [Related]
18. In-plane gait planning for earthworm-like metameric robots using genetic algorithm. Zhan X; Xu J; Fang H Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958 [TBL] [Abstract][Full Text] [Related]
19. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model. Tani J; Nishimoto R; Namikawa J; Ito M IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081 [TBL] [Abstract][Full Text] [Related]
20. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion. Fukuoka Y; Fukino K; Habu Y; Mori Y Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]