These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 15463806)

  • 21. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects.
    Kuk K; Taylor-Cousar JL
    Ther Adv Respir Dis; 2015 Dec; 9(6):313-26. PubMed ID: 26416827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis.
    McPhail GL; Clancy JP
    Drugs Today (Barc); 2013 Apr; 49(4):253-60. PubMed ID: 23616952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phenotypic consequences of CFTR mutations.
    Rowntree RK; Harris A
    Ann Hum Genet; 2003 Sep; 67(Pt 5):471-85. PubMed ID: 12940920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical implications of cystic fibrosis transmembrane conductance regulator mutations.
    Mickle JE; Cutting GR
    Clin Chest Med; 1998 Sep; 19(3):443-58, v. PubMed ID: 9759548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cystic fibrosis and related diseases of the pancreas.
    Naruse S; Kitagawa M; Ishiguro H; Fujiki K; Hayakawa T
    Best Pract Res Clin Gastroenterol; 2002 Jun; 16(3):511-26. PubMed ID: 12079272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystic fibrosis and the pancreas: recent scientific advances.
    Nousia-Arvanitakis S
    J Clin Gastroenterol; 1999 Sep; 29(2):138-42. PubMed ID: 10478873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Cystic fibrosis modifying genes].
    Knauer N; Ratjen F; Grasemann H
    Pneumologie; 2005 Jun; 59(6):395-404. PubMed ID: 15991075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Genetics of Cystic Fibrosis Transmembrane Conductance Regulator: Genotype and Phenotype.
    Sosnay PR; Raraigh KS; Gibson RL
    Pediatr Clin North Am; 2016 Aug; 63(4):585-98. PubMed ID: 27469177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation.
    Dalemans W; Barbry P; Champigny G; Jallat S; Dott K; Dreyer D; Crystal RG; Pavirani A; Lecocq JP; Lazdunski M
    Nature; 1991 Dec 19-26; 354(6354):526-8. PubMed ID: 1722027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins.
    Guggino WB
    Proc Am Thorac Soc; 2004; 1(1):28-32. PubMed ID: 16113408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blue native/SDS-PAGE analysis reveals reduced expression of the mClCA3 protein in cystic fibrosis knock-out mice.
    Brouillard F; Bensalem N; Hinzpeter A; Tondelier D; Trudel S; Gruber AD; Ollero M; Edelman A
    Mol Cell Proteomics; 2005 Nov; 4(11):1762-75. PubMed ID: 16099848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated residual chloride secretion does not protect against early chronic Pseudomonas aeruginosa infection in F508del homozygous cystic fibrosis patients.
    Derichs N; Mekus F; Bronsveld I; Bijman J; Veeze HJ; von der Hardt H; Tummler B; Ballmann M
    Pediatr Res; 2004 Jan; 55(1):69-75. PubMed ID: 14605249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein.
    Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ
    Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.
    Poulsen JH; Fischer H; Illek B; Machen TE
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5340-4. PubMed ID: 7515498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Relation between gene mutations and pancreatic exocrine function in patients with cystic fibrosis].
    Radivojević D; Guć-Sćekić M; Djurisić M; Lalić T; Minić P; Kanavakis E
    Srp Arh Celok Lek; 2001; 129 Suppl 1():6-9. PubMed ID: 15637983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy.
    Bangel-Ruland N; Tomczak K; Fernández Fernández E; Leier G; Leciejewski B; Rudolph C; Rosenecker J; Weber WM
    J Gene Med; 2013; 15(11-12):414-26. PubMed ID: 24123772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variant cystic fibrosis phenotypes in the absence of CFTR mutations.
    Groman JD; Meyer ME; Wilmott RW; Zeitlin PL; Cutting GR
    N Engl J Med; 2002 Aug; 347(6):401-7. PubMed ID: 12167682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Cystic fibrosis: molecular update and clinical implications].
    Orozco L; Chávez M; Saldaña Y; Velázquez R; Carnevale A; González-del Angel A; Jiménez S
    Rev Invest Clin; 2006; 58(2):139-52. PubMed ID: 16827266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cystic fibrosis from the exocrine pancreatic point of view].
    Virgilis D
    Harefuah; 2004 Jan; 143(1):67-72, 83. PubMed ID: 14748292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying Cystic Fibrosis Transmembrane Conductance Regulator Genetics and CFTR2 Data to Facilitate Diagnoses.
    Sosnay PR; Salinas DB; White TB; Ren CL; Farrell PM; Raraigh KS; Girodon E; Castellani C
    J Pediatr; 2017 Feb; 181S():S27-S32.e1. PubMed ID: 28129809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.