These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Hajj R; Baranek T; Le Naour R; Lesimple P; Puchelle E; Coraux C Stem Cells; 2007 Jan; 25(1):139-48. PubMed ID: 17008423 [TBL] [Abstract][Full Text] [Related]
7. Hyperoxia-induced changes in human airway epithelial cells: the protective effect of perflubron. Babu PB; Chidekel A; Shaffer TH Pediatr Crit Care Med; 2005 Mar; 6(2):188-94. PubMed ID: 15730607 [TBL] [Abstract][Full Text] [Related]
8. Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855 [TBL] [Abstract][Full Text] [Related]
9. The use of non-bronchoscopic brushings to study the paediatric airway. Lane C; Burgess S; Kicic A; Knight D; Stick S Respir Res; 2005 Jun; 6(1):53. PubMed ID: 15943866 [TBL] [Abstract][Full Text] [Related]
10. Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study. Woodworth BA; Antunes MB; Bhargave G; Palmer JN; Cohen NA Am J Rhinol; 2007; 21(5):533-7. PubMed ID: 17999784 [TBL] [Abstract][Full Text] [Related]
11. An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers. Woodworth BA; Tamashiro E; Bhargave G; Cohen NA; Palmer JN Am J Rhinol; 2008; 22(3):235-8. PubMed ID: 18588754 [TBL] [Abstract][Full Text] [Related]
12. Human nasal and tracheo-bronchial respiratory epithelial cell culture. Fulcher ML; Randell SH Methods Mol Biol; 2013; 945():109-21. PubMed ID: 23097104 [TBL] [Abstract][Full Text] [Related]
13. Techniques. Skoog L; Tani E Monogr Clin Cytol; 2009; 18():5-10. PubMed ID: 19092259 [No Abstract] [Full Text] [Related]
14. Effects of oxygen concentration and exposure time on cultured human airway epithelial cells. Zhu Y; Miller TL; Singhaus CJ; Shaffer TH; Chidekel A Pediatr Crit Care Med; 2008 Mar; 9(2):224-9. PubMed ID: 18477937 [TBL] [Abstract][Full Text] [Related]
15. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Ehrhardt C; Collnot EM; Baldes C; Becker U; Laue M; Kim KJ; Lehr CM Cell Tissue Res; 2006 Mar; 323(3):405-15. PubMed ID: 16249874 [TBL] [Abstract][Full Text] [Related]
16. Immuno-histochemical detection of MRPs in human lung cells in culture. Torky AR; Stehfest E; Viehweger K; Taege C; Foth H Toxicology; 2005 Feb; 207(3):437-50. PubMed ID: 15664271 [TBL] [Abstract][Full Text] [Related]
17. In vitro models for the assessment of inflammatory and immuno-modulatory effects of the volatile organic compound chlorobenzene. Lehmann I; Röder-Stolinski C; Nieber K; Fischäder G Exp Toxicol Pathol; 2008 Jun; 60(2-3):185-93. PubMed ID: 18514500 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of human airway tissue in the humanized xenograft model. Escotte S; Catusse C; Coraux C; Puchelle E J Cyst Fibros; 2004 Aug; 3 Suppl 2():63-5. PubMed ID: 15463929 [TBL] [Abstract][Full Text] [Related]
19. Airway inflammation is associated with mucous cell metaplasia and increased intraepithelial stored mucosubstances in horses. Lugo J; Harkema JR; deFeijter-Rupp H; Bartner L; Boruta D; Robinson NE Vet J; 2006 Sep; 172(2):293-301. PubMed ID: 15925524 [TBL] [Abstract][Full Text] [Related]
20. [Molecular pathology: in the beginning was the pre-analytic step!]. Bibeau F; Boissière-Michot F Ann Pathol; 2010 Apr; 30(2):71-2. PubMed ID: 20451061 [No Abstract] [Full Text] [Related] [Next] [New Search]