BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 15463936)

  • 1. Altered terminal glycosylation and the pathophysiology of CF lung disease.
    Rhim AD; Stoykova LI; Trindade AJ; Glick MC; Scanlin TF
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():95-6. PubMed ID: 15463936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell.
    Rhim AD; Stoykova L; Glick MC; Scanlin TF
    Glycoconj J; 2001 Sep; 18(9):649-59. PubMed ID: 12386452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An immunocytochemical assay to detect human CFTR expression following gene transfer.
    Davidson H; Wilson A; Gray RD; Horsley A; Pringle IA; McLachlan G; Nairn AC; Stearns C; Gibson J; Holder E; Jones L; Doherty A; Coles R; Sumner-Jones SG; Wasowicz M; Manvell M; Griesenbach U; Hyde SC; Gill DR; Davies J; Collie DD; Alton EW; Porteous DJ; Boyd AC
    Mol Cell Probes; 2009 Dec; 23(6):272-80. PubMed ID: 19615439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profile study in CFTR mutated bronchial cell lines.
    Gambardella S; Biancolella M; D'Apice MR; Amati F; Sangiuolo F; Farcomeni A; Chillemi G; Bueno S; Desideri A; Novelli G
    Clin Exp Med; 2006 Dec; 6(4):157-65. PubMed ID: 17191107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mucin glycosylation and sulphation in airway epithelial cells is not influenced by cystic fibrosis transmembrane conductance regulator expression.
    Leir SH; Parry S; Palmai-Pallag T; Evans J; Morris HR; Dell A; Harris A
    Am J Respir Cell Mol Biol; 2005 May; 32(5):453-61. PubMed ID: 15677769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal glycosylation in cystic fibrosis.
    Scanlin TF; Glick MC
    Biochim Biophys Acta; 1999 Oct; 1455(2-3):241-53. PubMed ID: 10571016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystic fibrosis transmembrane conductance regulator is expressed in mucin granules from Calu-3 and primary human airway epithelial cells.
    LeSimple P; Goepp J; Palmer ML; Fahrenkrug SC; O'Grady SM; Ferraro P; Robert R; Hanrahan JW
    Am J Respir Cell Mol Biol; 2013 Oct; 49(4):511-6. PubMed ID: 23742042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis.
    Dormer RL; Harris CM; Clark Z; Pereira MM; Doull IJ; Norez C; Becq F; McPherson MA
    Thorax; 2005 Jan; 60(1):55-9. PubMed ID: 15618584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airway epithelial cells--hyperabsorption in CF?
    Kunzelmann K; Schreiber R
    Int J Biochem Cell Biol; 2012 Aug; 44(8):1232-5. PubMed ID: 22542896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysregulation of proteoglycan production by intrahepatic biliary epithelial cells bearing defective (delta-f508) cystic fibrosis transmembrane conductance regulator.
    Bhaskar KR; Turner BS; Grubman SA; Jefferson DM; LaMont JT
    Hepatology; 1998 Jan; 27(1):7-14. PubMed ID: 9425910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells.
    Antigny F; Norez C; Cantereau A; Becq F; Vandebrouck C
    Respir Res; 2008 Oct; 9(1):70. PubMed ID: 18973672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental paradigm for early features of cystic fibrosis.
    Larson JE; Cohen JC
    Pediatr Pulmonol; 2005 Nov; 40(5):371-7. PubMed ID: 15830387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis: basic science.
    McAuley DF; Elborn JS
    Paediatr Respir Rev; 2000 Jun; 1(2):93-100. PubMed ID: 12531100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifier genes in cystic fibrosis lung disease.
    Merlo CA; Boyle MP
    J Lab Clin Med; 2003 Apr; 141(4):237-41. PubMed ID: 12677168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis.
    Copreni E; Penzo M; Carrabino S; Conese M
    Gene Ther; 2004 Oct; 11 Suppl 1():S67-75. PubMed ID: 15454960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective acidification of intracellular organelles in cystic fibrosis.
    Barasch J; Kiss B; Prince A; Saiman L; Gruenert D; al-Awqati Q
    Nature; 1991 Jul; 352(6330):70-3. PubMed ID: 1712081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terminal glycosylation of cystic fibrosis airway epithelial cells.
    Rhim AD; Kothari VA; Park PJ; Mulberg AE; Glick MC; Scanlin TF
    Glycoconj J; 2000 Jun; 17(6):385-91. PubMed ID: 11294504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunopathophysiologic mechanisms of cystic fibrosis lung disease.
    Soferman R
    Isr Med Assoc J; 2006 Jan; 8(1):44-8. PubMed ID: 16450752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-inflammatory effect of miglustat in bronchial epithelial cells.
    Dechecchi MC; Nicolis E; Norez C; Bezzerri V; Borgatti M; Mancini I; Rizzotti P; Ribeiro CM; Gambari R; Becq F; Cabrini G
    J Cyst Fibros; 2008 Nov; 7(6):555-65. PubMed ID: 18815075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-.
    Ehrhardt C; Collnot EM; Baldes C; Becker U; Laue M; Kim KJ; Lehr CM
    Cell Tissue Res; 2006 Mar; 323(3):405-15. PubMed ID: 16249874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.