BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15463939)

  • 1. The patch-clamp and planar lipid bilayer techniques: powerful and versatile tools to investigate the CFTR Cl- channel.
    Sheppard DN; Gray MA; Gong X; Sohma Y; Kogan I; Benos DJ; Scott-Ward TS; Chen JH; Li H; Cai Z; Gupta J; Li C; Ramjeesingh M; Berdiev BK; Ismailov II; Bear CE; Hwang TC; Linsdell P; Hug MJ
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():101-8. PubMed ID: 15463939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of high-resolution single-channel recording to functional studies of cystic fibrosis mutants.
    Cai Z; Sohma Y; Bompadre SG; Sheppard DN; Hwang TC
    Methods Mol Biol; 2011; 741():419-41. PubMed ID: 21594800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rectification of cystic fibrosis transmembrane conductance regulator chloride channel mediated by extracellular divalent cations.
    Zhao J; Zerhusen B; Xie J; Drumm ML; Davis PB; Ma J
    Biophys J; 1996 Nov; 71(5):2458-66. PubMed ID: 8913585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry and novel gating mechanism within the cystic fibrosis transmembrane conductance regulator channel.
    Qian F; Li T; Yang F; Liu L
    Exp Physiol; 2014 Dec; 99(12):1611-23. PubMed ID: 25326525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to investigate the mechanism of action of CFTR modulators.
    Cai Z; Scott-Ward TS; Li H; Schmidt A; Sheppard DN
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():141-7. PubMed ID: 15463947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.
    Fischer H; Machen TE
    Biophys J; 1996 Dec; 71(6):3073-82. PubMed ID: 8968578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN
    J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a 7,8-benzoflavone double effect on CFTR Cl(-) channel activity.
    Ferrera L; Pincin C; Moran O
    J Membr Biol; 2007 Dec; 220(1-3):1-9. PubMed ID: 17876495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR, investigated with the two-electrode voltage-clamp technique: the importance of knowing the series resistance.
    Nagel G
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():109-11. PubMed ID: 15463940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid.
    Scott-Ward TS; Li H; Schmidt A; Cai Z; Sheppard DN
    Mol Membr Biol; 2004; 21(1):27-38. PubMed ID: 14668136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis.
    Mall M; Hirtz S; Gonska T; Kunzelmann K
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():165-9. PubMed ID: 15463952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
    Stanton BA
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):457-64. PubMed ID: 9261986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.