These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15463943)

  • 21. Guanabenz, an alpha2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells.
    Norez C; Vandebrouck C; Antigny F; Dannhoffer L; Blondel M; Becq F
    Eur J Pharmacol; 2008 Sep; 592(1-3):33-40. PubMed ID: 18640110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Potential nasal transepithelial difference].
    Fajac I; Sermet I
    Rev Pneumol Clin; 2008 Feb; 64(1):34-7. PubMed ID: 18613347
    [No Abstract]   [Full Text] [Related]  

  • 23. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.
    Vandewalle A
    Chang Gung Med J; 2007; 30(1):17-25. PubMed ID: 17477025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transepithelial fluctuation analysis of chloride secretion.
    Singh AK; Schultz BD; van Driessche W; Bridges RJ
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():127-32. PubMed ID: 15463944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cystic fibrosis transmembrane conductance regulator and chloride-dependent ion fluxes of ovine vocal fold epithelium.
    Leydon C; Fisher KV; Lodewyck-Falciglia D
    J Speech Lang Hear Res; 2009 Jun; 52(3):745-54. PubMed ID: 18806217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model study of toluene diisocyanate effect on transepithelial ion transport.
    Kosik-Bogacka D; Tyrakowski T
    Med Sci Monit; 2002 May; 8(5):BR187-92. PubMed ID: 12011768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The CF-CIRC study: a French collaborative study to assess the accuracy of cystic fibrosis diagnosis in neonatal screening.
    Sermet-Gaudelus I; Roussel D; Bui S; Deneuville E; Huet F; Reix P; Bellon G; Lenoir G; Edelman A
    BMC Pediatr; 2006 Oct; 6():25. PubMed ID: 17018149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis.
    Marcet B; Boeynaems JM
    Pharmacol Ther; 2006 Dec; 112(3):719-32. PubMed ID: 16828872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced exhaled NO is related to impaired nasal potential difference in patients with cystic fibrosis.
    Texereau J; Fajac I; Hubert D; Coste J; Dusser DJ; Bienvenu T; Dall'Ava-Santucci J; Dinh-Xuan AT
    Vascul Pharmacol; 2005 Dec; 43(6):385-9. PubMed ID: 16182611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients.
    Fajac I; Hubert D; Guillemot D; Honoré I; Bienvenu T; Volter F; Dall'Ava-Santucci J; Dusser DJ
    Thorax; 2004 Nov; 59(11):971-6. PubMed ID: 15516474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CFTR: more than just a chloride channel.
    Mehta A
    Pediatr Pulmonol; 2005 Apr; 39(4):292-8. PubMed ID: 15573386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alpha-aminoazaheterocyclic-methylglyoxal adducts do not inhibit cystic fibrosis transmembrane conductance regulator chloride channel activity.
    Sonawane ND; Zegarra-Moran O; Namkung W; Galietta LJ; Verkman AS
    J Pharmacol Exp Ther; 2008 May; 325(2):529-35. PubMed ID: 18272811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cystic fibrosis transmembrane conductance regulator ion channel function testing in recurrent acute pancreatitis.
    Segal I; Yaakov Y; Adler SN; Blau H; Broide E; Santo M; Yahav Y; Klar A; Lerner A; Aviram M; Ellis I; Mountford R; Shteyer E; Kerem E; Wilschanski M
    J Clin Gastroenterol; 2008 Aug; 42(7):810-4. PubMed ID: 18360295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of alpha-aminoazaheterocycle-methylglyoxal adducts as a new class of high-affinity inhibitors of cystic fibrosis transmembrane conductance regulator chloride channels.
    Routaboul C; Norez C; Melin P; Molina MC; Boucherle B; Bossard F; Noel S; Robert R; Gauthier C; Becq F; Décout JL
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1023-35. PubMed ID: 17578899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CFTR, chloride concentration and cell volume: could mammalian protein histidine phosphorylation play a latent role?
    Treharne KJ; Crawford RM; Mehta A
    Exp Physiol; 2006 Jan; 91(1):131-9. PubMed ID: 16219660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adenosine receptors, cystic fibrosis, and airway hydration.
    Com G; Clancy JP
    Handb Exp Pharmacol; 2009; (193):363-81. PubMed ID: 19639288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion transport in alveolar type I cells.
    Johnson MD
    Mol Biosyst; 2007 Mar; 3(3):178-86. PubMed ID: 17308664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia.
    Hasegawa I; Niisato N; Iwasaki Y; Marunaka Y
    Biochem Biophys Res Commun; 2006 May; 343(2):475-82. PubMed ID: 16546120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ozone stress down-regulates the expression of cystic fibrosis transmembrane conductance regulator in human bronchial epithelial cells.
    Qu F; Qin XQ; Cui YR; Xiang Y; Tan YR; Liu HJ; Peng LH; Zhou XY; Liu C; Zhu XL
    Chem Biol Interact; 2009 May; 179(2-3):219-26. PubMed ID: 19061877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.