These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 15464141)
1. Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Self DW Neuropharmacology; 2004; 47 Suppl 1():242-55. PubMed ID: 15464141 [TBL] [Abstract][Full Text] [Related]
2. Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors. Inoue Y; Yao L; Hopf FW; Fan P; Jiang Z; Bonci A; Diamond I J Pharmacol Exp Ther; 2007 Jul; 322(1):23-9. PubMed ID: 17468300 [TBL] [Abstract][Full Text] [Related]
4. Neural substrates of drug craving and relapse in drug addiction. Self DW Ann Med; 1998 Aug; 30(4):379-89. PubMed ID: 9783837 [TBL] [Abstract][Full Text] [Related]
5. Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Schmidt HD; Pierce RC Neuroscience; 2006 Oct; 142(2):451-61. PubMed ID: 16844308 [TBL] [Abstract][Full Text] [Related]
6. Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Self DW; McClenahan AW; Beitner-Johnson D; Terwilliger RZ; Nestler EJ Synapse; 1995 Dec; 21(4):312-8. PubMed ID: 8869161 [TBL] [Abstract][Full Text] [Related]
7. Psychomotor stimulants and neuronal plasticity. Wolf ME; Sun X; Mangiavacchi S; Chao SZ Neuropharmacology; 2004; 47 Suppl 1():61-79. PubMed ID: 15464126 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core, of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat. Schmidt HD; Anderson SM; Pierce RC Eur J Neurosci; 2006 Jan; 23(1):219-28. PubMed ID: 16420431 [TBL] [Abstract][Full Text] [Related]
9. Synaptic plasticity in the mesolimbic dopamine system. Thomas MJ; Malenka RC Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):815-9. PubMed ID: 12740128 [TBL] [Abstract][Full Text] [Related]
11. Divergent anatomical pattern of D1 and D3 binding and dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa mRNA expression in the Roman rat strains: Implications for drug addiction. Guitart-Masip M; Johansson B; Fernández-Teruel A; Cañete T; Tobeña A; Terenius L; Giménez-Llort L Neuroscience; 2006 Nov; 142(4):1231-43. PubMed ID: 17008016 [TBL] [Abstract][Full Text] [Related]
12. Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats. Lu L; Dempsey J; Shaham Y; Hope BT J Neurochem; 2005 Jul; 94(1):161-8. PubMed ID: 15953359 [TBL] [Abstract][Full Text] [Related]
13. Synaptic plasticity in the mesolimbic system: therapeutic implications for substance abuse. Chen BT; Hopf FW; Bonci A Ann N Y Acad Sci; 2010 Feb; 1187():129-39. PubMed ID: 20201850 [TBL] [Abstract][Full Text] [Related]
14. Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Bonci A; Borgland S Neuropharmacology; 2009; 56 Suppl 1():107-11. PubMed ID: 18694770 [TBL] [Abstract][Full Text] [Related]
15. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Haberny SL; Carr KD Neuroscience; 2005; 132(4):1035-43. PubMed ID: 15857708 [TBL] [Abstract][Full Text] [Related]
16. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Anderson SM; Pierce RC Pharmacol Ther; 2005 Jun; 106(3):389-403. PubMed ID: 15922019 [TBL] [Abstract][Full Text] [Related]
17. Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system. Stefański R; Ziółkowska B; Kuśmider M; Mierzejewski P; Wyszogrodzka E; Kołomańska P; Dziedzicka-Wasylewska M; Przewłocki R; Kostowski W Brain Res; 2007 Jul; 1157():1-10. PubMed ID: 17544385 [TBL] [Abstract][Full Text] [Related]
18. [Current status in drug addiction and addiction memory research]. Wang HR; Gao XR; Zhang KG; Han JS Sheng Li Ke Xue Jin Zhan; 2003 Jul; 34(3):202-6. PubMed ID: 14628463 [TBL] [Abstract][Full Text] [Related]
19. Synaptic plasticity and addiction: learning mechanisms gone awry. Mameli M; Lüscher C Neuropharmacology; 2011 Dec; 61(7):1052-9. PubMed ID: 21277315 [TBL] [Abstract][Full Text] [Related]
20. Long-term haloperidol treatment (but not risperidone) enhances addiction-related behaviors in mice: role of dopamine D2 receptors. Carvalho RC; Fukushiro DF; Helfer DC; Callegaro-Filho D; Trombin TF; Zanlorenci LH; Sanday L; Silva RH; Frussa-Filho R Addict Biol; 2009 Jul; 14(3):283-93. PubMed ID: 19298320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]