BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 15464262)

  • 1. Upregulation and colocalization of p75 and Nav1.8 in Purkinje neurons in experimental autoimmune encephalomyelitis.
    Damarjian TG; Craner MJ; Black JA; Waxman SG
    Neurosci Lett; 2004 Oct; 369(3):186-90. PubMed ID: 15464262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS.
    Craner MJ; Damarjian TG; Liu S; Hains BC; Lo AC; Black JA; Newcombe J; Cuzner ML; Waxman SG
    Glia; 2005 Jan; 49(2):220-9. PubMed ID: 15390090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis.
    Shields SD; Cheng X; Gasser A; Saab CY; Tyrrell L; Eastman EM; Iwata M; Zwinger PJ; Black JA; Dib-Hajj SD; Waxman SG
    Ann Neurol; 2012 Feb; 71(2):186-94. PubMed ID: 22367990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination.
    Craner MJ; Lo AC; Black JA; Waxman SG
    Brain; 2003 Jul; 126(Pt 7):1552-61. PubMed ID: 12805113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal course of upregulation of Na(v)1.8 in Purkinje neurons parallels the progression of clinical deficit in experimental allergic encephalomyelitis.
    Craner MJ; Kataoka Y; Lo AC; Black JA; Baker D; Waxman SG
    J Neuropathol Exp Neurol; 2003 Sep; 62(9):968-75. PubMed ID: 14533785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebellar dysfunction in multiple sclerosis: evidence for an acquired channelopathy.
    Waxman SG
    Prog Brain Res; 2005; 148():353-65. PubMed ID: 15661203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiated pattern of sodium channel expression in dissociated Purkinje neurons maintained in long-term culture.
    Fry M; Boegle AK; Maue RA
    J Neurochem; 2007 May; 101(3):737-48. PubMed ID: 17448145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis.
    Saab CY; Craner MJ; Kataoka Y; Waxman SG
    Exp Brain Res; 2004 Sep; 158(1):1-8. PubMed ID: 15118796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of nerve growth factor and TrkA expression in the SVZ of EAE rats: evidence for a possible functional significance.
    Triaca V; Tirassa P; Aloe L
    Exp Neurol; 2005 Jan; 191(1):53-64. PubMed ID: 15589512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-affinity NGF receptor in the rat spinal cord during acute and chronic phases of experimental autoimmune encephalomyelitis: a possible functional significance.
    Oderfeld-Nowak B; Zaremba M; Lipkowski AW; Kwiatkowska-Patzer B; Triaca V; Aloe L
    Arch Ital Biol; 2003 Mar; 141(2-3):103-16. PubMed ID: 12825322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Block of a subset of sodium channels exacerbates experimental autoimmune encephalomyelitis.
    Stevens M; Timmermans S; Bottelbergs A; Hendriks JJ; Brône B; Baes M; Tytgat J
    J Neuroimmunol; 2013 Aug; 261(1-2):21-8. PubMed ID: 23735284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulation of water channel aquaporin-4 in experimental autoimmune encephalomyeritis.
    Miyamoto K; Nagaosa N; Motoyama M; Kataoka K; Kusunoki S
    J Neurol Sci; 2009 Jan; 276(1-2):103-7. PubMed ID: 18945445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annexin II/p11 is up-regulated in Purkinje cells in EAE and MS.
    Craner MJ; Lo AC; Black JA; Baker D; Newcombe J; Cuzner ML; Waxman SG
    Neuroreport; 2003 Mar; 14(4):555-8. PubMed ID: 12657884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential modulatory effect of NGF on MHC class I and class II expression in spinal cord cells of EAE rats.
    Stampachiacchiere B; Aloe L
    J Neuroimmunol; 2005 Dec; 169(1-2):20-30. PubMed ID: 16169604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VEGF and angiogenesis in acute and chronic MOG((35-55)) peptide induced EAE.
    Roscoe WA; Welsh ME; Carter DE; Karlik SJ
    J Neuroimmunol; 2009 Apr; 209(1-2):6-15. PubMed ID: 19233483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine.
    Black JA; Liu S; Carrithers M; Carrithers LM; Waxman SG
    Ann Neurol; 2007 Jul; 62(1):21-33. PubMed ID: 17654737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of C5a in the brain does not exacerbate experimental autoimmune encephalomyelitis.
    Reiman R; Campos Torres A; Martin BK; Ting JP; Campbell IL; Barnum SR
    Neurosci Lett; 2005 Dec; 390(3):134-8. PubMed ID: 16154690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells.
    Levin SI; Khaliq ZM; Aman TK; Grieco TM; Kearney JA; Raman IM; Meisler MH
    J Neurophysiol; 2006 Aug; 96(2):785-93. PubMed ID: 16687615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis.
    Nicholas AP; Sambandam T; Echols JD; Barnum SR
    J Comp Neurol; 2005 Jun; 486(3):254-66. PubMed ID: 15844173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficient p75 low-affinity neurotrophin receptor expression exacerbates experimental allergic encephalomyelitis in C57/BL6 mice.
    Copray S; Küst B; Emmer B; Lin MY; Liem R; Amor S; de Vries H; Floris S; Boddeke E
    J Neuroimmunol; 2004 Mar; 148(1-2):41-53. PubMed ID: 14975585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.