These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15464309)

  • 21. Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat.
    Moshitch D; Las L; Ulanovsky N; Bar-Yosef O; Nelken I
    J Neurophysiol; 2006 Jun; 95(6):3756-69. PubMed ID: 16554513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex.
    Kaur S; Lazar R; Metherate R
    J Neurophysiol; 2004 Jun; 91(6):2551-67. PubMed ID: 14749307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contrast tuned responses in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Eur J Neurosci; 2012 Feb; 35(4):550-61. PubMed ID: 22321018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic spatiotemporal inhibition in the guinea pig auditory cortex.
    Kubota M; Sugimoto S; Horikawa J
    Neuroreport; 2008 Nov; 19(17):1691-4. PubMed ID: 18849882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time course of forward masking tuning curves in cat primary auditory cortex.
    Brosch M; Schreiner CE
    J Neurophysiol; 1997 Feb; 77(2):923-43. PubMed ID: 9065859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contextual modulation of frequency tuning of neurons in the rat auditory cortex.
    Peng Y; Sun X; Zhang J
    Neuroscience; 2010 Sep; 169(3):1403-13. PubMed ID: 20553820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex.
    Pienkowski M; Harrison RV
    J Neurophysiol; 2005 Jan; 93(1):454-66. PubMed ID: 15342716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of auditory cortical activities in awake cats by pure tone stimuli.
    Qin L; Sato Y
    Neurosci Lett; 2004 Jul; 365(3):190-4. PubMed ID: 15246546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences.
    Eggermont JJ
    J Neurophysiol; 1998 Nov; 80(5):2743-64. PubMed ID: 9819278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive stimulus optimization for auditory cortical neurons.
    O'Connor KN; Petkov CI; Sutter ML
    J Neurophysiol; 2005 Dec; 94(6):4051-67. PubMed ID: 16135553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic amplitude coding in the auditory cortex of awake rhesus macaques.
    Malone BJ; Scott BH; Semple MN
    J Neurophysiol; 2007 Sep; 98(3):1451-74. PubMed ID: 17615123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex.
    Zhang J; Nakamoto KT; Kitzes LM
    J Neurophysiol; 2005 Oct; 94(4):2263-74. PubMed ID: 15917317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Relation between responses of auditory cortex neurons in the cat and the signal significance of acoustic stimuli in the instrumental alimentary reflex].
    Tal'nov AN
    Neirofiziologiia; 1985; 17(2):212-21. PubMed ID: 4000304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural correlates of auditory temporal-interval discrimination in cats.
    Liu Y; Qin L; Zhang X; Dong C; Sato Y
    Behav Brain Res; 2010 Dec; 215(1):28-38. PubMed ID: 20599565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus).
    Aitkin LM; Merzenich MM; Irvine DR; Clarey JC; Nelson JE
    J Comp Neurol; 1986 Oct; 252(2):175-85. PubMed ID: 3782506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.
    David SV; Mesgarani N; Fritz JB; Shamma SA
    J Neurosci; 2009 Mar; 29(11):3374-86. PubMed ID: 19295144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory topography and temporal response dynamics of canary caudal telencephalon.
    Terleph TA; Mello CV; Vicario DS
    J Neurobiol; 2006 Feb; 66(3):281-92. PubMed ID: 16329130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.
    Fritz J; Elhilali M; Shamma S
    Hear Res; 2005 Aug; 206(1-2):159-76. PubMed ID: 16081006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.