These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 15464368)
1. Protein- and gene-based tissue engineering in bone repair. Kofron MD; Li X; Laurencin CT Curr Opin Biotechnol; 2004 Oct; 15(5):399-405. PubMed ID: 15464368 [TBL] [Abstract][Full Text] [Related]
2. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Liu HW; Chen CH; Tsai CL; Hsiue GH Bone; 2006 Oct; 39(4):825-36. PubMed ID: 16782421 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Nie H; Wang CH J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077 [TBL] [Abstract][Full Text] [Related]
5. Protein-based tissue engineering in bone and cartilage repair. Wozney JM; Seeherman HJ Curr Opin Biotechnol; 2004 Oct; 15(5):392-8. PubMed ID: 15464367 [TBL] [Abstract][Full Text] [Related]
6. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388 [TBL] [Abstract][Full Text] [Related]
7. Bone tissue engineering by gene delivery. Kofron MD; Laurencin CT Adv Drug Deliv Rev; 2006 Jul; 58(4):555-76. PubMed ID: 16790291 [TBL] [Abstract][Full Text] [Related]
8. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Huang YC; Simmons C; Kaigler D; Rice KG; Mooney DJ Gene Ther; 2005 Mar; 12(5):418-26. PubMed ID: 15647766 [TBL] [Abstract][Full Text] [Related]
9. Bone morphogenetic proteins and tissue engineering: future directions. Calori GM; Donati D; Di Bella C; Tagliabue L Injury; 2009 Dec; 40 Suppl 3():S67-76. PubMed ID: 20082795 [TBL] [Abstract][Full Text] [Related]
10. The use of tissue-engineered bone with human bone morphogenetic protein-4-modified bone-marrow stromal cells in repairing mandibular defects in rabbits. Jiang X; Gittens SA; Chang Q; Zhang X; Chen C; Zhang Z Int J Oral Maxillofac Surg; 2006 Dec; 35(12):1133-9. PubMed ID: 17023144 [TBL] [Abstract][Full Text] [Related]
11. Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Schek RM; Wilke EN; Hollister SJ; Krebsbach PH Biomaterials; 2006 Mar; 27(7):1160-6. PubMed ID: 16112727 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Yilgor P; Tuzlakoglu K; Reis RL; Hasirci N; Hasirci V Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857 [TBL] [Abstract][Full Text] [Related]
13. Noggin improves bone healing elicited by muscle stem cells expressing inducible BMP4. Peng H; Usas A; Hannallah D; Olshanski A; Cooper GM; Huard J Mol Ther; 2005 Aug; 12(2):239-46. PubMed ID: 16043095 [TBL] [Abstract][Full Text] [Related]
14. Slow and continuous application of human recombinant bone morphogenetic protein via biodegradable poly(lactide-co-glycolide) foamspheres. Weber FE; Eyrich G; Grätz KW; Maly FE; Sailer HF Int J Oral Maxillofac Surg; 2002 Feb; 31(1):60-5. PubMed ID: 11936402 [TBL] [Abstract][Full Text] [Related]
15. [Tissue engineered bone regeneration of periosteal cells using recombinant human bone morphogenetic protein 2 induce]. Zhang C; Hu Y; Xiong Z; Zhang S; Yan Y; Cui F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Feb; 19(2):100-4. PubMed ID: 15759922 [TBL] [Abstract][Full Text] [Related]
16. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
17. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques. Roh JD; Brennan MP; Lopez-Soler RI; Fong PM; Goyal A; Dardik A; Breuer CK J Pediatr Surg; 2007 Jan; 42(1):198-202. PubMed ID: 17208565 [TBL] [Abstract][Full Text] [Related]
18. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765 [TBL] [Abstract][Full Text] [Related]
20. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]