BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15464630)

  • 1. Enhancement of the biodegradability of aromatic groundwater contaminants.
    Bittkau A; Geyer R; Bhatt M; Schlosser D
    Toxicology; 2004 Dec; 205(3):201-10. PubMed ID: 15464630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems.
    Schmidt M; Wolfram D; Birkigt J; Ahlheim J; Paschke H; Richnow HH; Nijenhuis I
    Sci Total Environ; 2014 Feb; 472():185-93. PubMed ID: 24291561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorobenzene biodegradation under consecutive aerobic-anaerobic conditions.
    Balcke GU; Turunen LP; Geyer R; Wenderoth DF; Schlosser D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):109-20. PubMed ID: 19712388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Branch-specific detection of phenols and assessment of ground water solubility].
    Fischer F; Kerndorff H; Kühn S
    Schriftenr Ver Wasser Boden Lufthyg; 2000; 107():I-X, 1-108. PubMed ID: 11225284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland.
    Braeckevelt M; Rokadia H; Imfeld G; Stelzer N; Paschke H; Kuschk P; Kästner M; Richnow HH; Weber S
    Environ Pollut; 2007 Jul; 148(2):428-37. PubMed ID: 17291643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ bioremediation of monoaromatic pollutants in groundwater: a review.
    Farhadian M; Vachelard C; Duchez D; Larroche C
    Bioresour Technol; 2008 Sep; 99(13):5296-308. PubMed ID: 18054222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of central intermediate compounds produced from biodegradation of aromatic compounds.
    Cinar O
    Bioprocess Biosyst Eng; 2004 Oct; 26(5):341-5. PubMed ID: 15300479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regionally contaminated aquifers--toxicological relevance and remediation options (Bitterfeld case study).
    Heidrich S; Schirmer M; Weiss H; Wycisk P; Grossmann J; Kaschl A
    Toxicology; 2004 Dec; 205(3):143-55. PubMed ID: 15464625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of methylquinoline transformation products in microcosm experiments and in tar oil contaminated groundwater using LC-NMR.
    Reineke AK; Preiss A; Elend M; Hollender J
    Chemosphere; 2008 Feb; 70(11):2118-26. PubMed ID: 17936873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany).
    Heidrich S; Weiss H; Kaschl A
    Environ Pollut; 2004 May; 129(2):277-88. PubMed ID: 14987813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple methodology to evaluate influence of H2O2 and Fe(2+) concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum.
    Mater L; Rosa EV; Berto J; Corrêa AX; Schwingel PR; Radetski CM
    J Hazard Mater; 2007 Oct; 149(2):379-86. PubMed ID: 17493749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant.
    Kao CM; Chai CT; Liu JK; Yeh TY; Chen KF; Chen SC
    Water Res; 2004 Feb; 38(3):663-72. PubMed ID: 14723935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation.
    Ahad JM; Slater GF
    Sci Total Environ; 2008 Aug; 401(1-3):194-8. PubMed ID: 18466958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of anaerobic monochlorobenzene degradation using stable isotope tracers.
    Nijenhuis I; Stelzer N; Kästner M; Richnow HH
    Environ Sci Technol; 2007 Jun; 41(11):3836-42. PubMed ID: 17612157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study for the remediation of groundwater contaminated by organolead compounds.
    Andreottola G; Dallago L; Ferrarese E
    J Hazard Mater; 2008 Aug; 156(1-3):488-98. PubMed ID: 18242831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site.
    Baldwin BR; Nakatsu CH; Nebe J; Wickham GS; Parks C; Nies L
    J Hazard Mater; 2009 Apr; 163(2-3):524-30. PubMed ID: 18706759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of in situ measurement of organic compound transformation in groundwater.
    Papiernik SK
    Pest Manag Sci; 2001 Apr; 57(4):325-32. PubMed ID: 11455811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.