These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 15465057)
1. The ring of the rhodopsin chromophore in a hydrophobic activation switch within the binding pocket. Spooner PJ; Sharples JM; Goodall SC; Bovee-Geurts PH; Verhoeven MA; Lugtenburg J; Pistorius AM; Degrip WJ; Watts A J Mol Biol; 2004 Oct; 343(3):719-30. PubMed ID: 15465057 [TBL] [Abstract][Full Text] [Related]
2. Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate. Spooner PJ; Sharples JM; Goodall SC; Seedorf H; Verhoeven MA; Lugtenburg J; Bovee-Geurts PH; DeGrip WJ; Watts A Biochemistry; 2003 Nov; 42(46):13371-8. PubMed ID: 14621981 [TBL] [Abstract][Full Text] [Related]
3. Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit in the binding site of isorhodopsin. Creemers AF; Bovee-Geurts PH; DeGrip WJ; Lugtenburg J; de Groot HJ Biochemistry; 2004 Dec; 43(51):16011-8. PubMed ID: 15609995 [TBL] [Abstract][Full Text] [Related]
4. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
5. Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. Verdegem PJ; Bovee-Geurts PH; de Grip WJ; Lugtenburg J; de Groot HJ Biochemistry; 1999 Aug; 38(35):11316-24. PubMed ID: 10471281 [TBL] [Abstract][Full Text] [Related]
6. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. Crocker E; Eilers M; Ahuja S; Hornak V; Hirshfeld A; Sheves M; Smith SO J Mol Biol; 2006 Mar; 357(1):163-72. PubMed ID: 16414074 [TBL] [Abstract][Full Text] [Related]
7. The activation mechanism of chemokine receptor CCR5 involves common structural changes but a different network of interhelical interactions relative to rhodopsin. Springael JY; de Poorter C; Deupi X; Van Durme J; Pardo L; Parmentier M Cell Signal; 2007 Jul; 19(7):1446-56. PubMed ID: 17320349 [TBL] [Abstract][Full Text] [Related]
8. The steric trigger in rhodopsin activation. Shieh T; Han M; Sakmar TP; Smith SO J Mol Biol; 1997 Jun; 269(3):373-84. PubMed ID: 9199406 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. Axe FU; Bembenek SD; Szalma S J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444 [TBL] [Abstract][Full Text] [Related]
10. Observations of light-induced structural changes of retinal within rhodopsin. Gröbner G; Burnett IJ; Glaubitz C; Choi G; Mason AJ; Watts A Nature; 2000 Jun; 405(6788):810-3. PubMed ID: 10866205 [TBL] [Abstract][Full Text] [Related]
11. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin. Fishkin N; Berova N; Nakanishi K Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879 [TBL] [Abstract][Full Text] [Related]
12. Structure of bovine rhodopsin in a trigonal crystal form. Li J; Edwards PC; Burghammer M; Villa C; Schertler GF J Mol Biol; 2004 Nov; 343(5):1409-38. PubMed ID: 15491621 [TBL] [Abstract][Full Text] [Related]
13. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K. Furutani Y; Kandori H; Shichida Y Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195 [TBL] [Abstract][Full Text] [Related]
14. Predisposition of the dark state of rhodopsin to functional changes in structure. Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319 [TBL] [Abstract][Full Text] [Related]
15. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin. Lehmann N; Alexiev U; Fahmy K J Mol Biol; 2007 Mar; 366(4):1129-41. PubMed ID: 17196983 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085 [TBL] [Abstract][Full Text] [Related]
17. Selective interface detection: mapping binding site contacts in membrane proteins by NMR spectroscopy. Kiihne SR; Creemers AF; de Grip WJ; Bovee-Geurts PH; Lugtenburg J; de Groot HJ J Am Chem Soc; 2005 Apr; 127(16):5734-5. PubMed ID: 15839640 [TBL] [Abstract][Full Text] [Related]
18. Ultraviolet resonance Raman examination of the light-induced protein structural changes in rhodopsin activation. Kochendoerfer GG; Kaminaka S; Mathies RA Biochemistry; 1997 Oct; 36(43):13153-9. PubMed ID: 9376376 [TBL] [Abstract][Full Text] [Related]
19. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies. Yuzlenko O; Kieć-Kononowicz K J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794 [TBL] [Abstract][Full Text] [Related]
20. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors. Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]