BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 15465696)

  • 1. Root distribution of Pinus pinaster, P. radiata, Eucalyptus globulus and E. kochii and associated soil chemistry in agricultural land adjacent to tree lines.
    Sudmeyer RA; Speijers J; Nicholas BD
    Tree Physiol; 2004 Dec; 24(12):1333-46. PubMed ID: 15465696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.
    Laclau JP; Arnaud M; Bouillet JP; Ranger J
    Tree Physiol; 2001 Feb; 21(2-3):129-36. PubMed ID: 11303643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.
    Wajja-Musukwe TN; Wilson J; Sprent JI; Ong CK; Deans JD; Okorio J
    Tree Physiol; 2008 Feb; 28(2):233-42. PubMed ID: 18055434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.
    Bakker MR; Jolicoeur E; Trichet P; Augusto L; Plassard C; Guinberteau J; Loustau D
    Tree Physiol; 2009 Feb; 29(2):229-38. PubMed ID: 19203948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil-plant hydrology of indigenous and exotic trees in an Ethiopian montane forest.
    Fritzsche F; Abate A; Fetene M; Beck E; Weise S; Guggenberger G
    Tree Physiol; 2006 Aug; 26(8):1043-54. PubMed ID: 16651254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species.
    Brooksbank K; Veneklaas EJ; White DA; Carter JL
    Tree Physiol; 2011 Jun; 31(6):649-58. PubMed ID: 21743058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus kochii subsp. plenissima, to contrasting decapitation regimes.
    Wildy DT; Pate JS
    Ann Bot; 2002 Aug; 90(2):185-97. PubMed ID: 12197516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root architecture and wind-firmness of mature Pinus pinaster.
    Danjon F; Fourcaud T; Bert D
    New Phytol; 2005 Nov; 168(2):387-400. PubMed ID: 16219078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiata.
    Chen YL; Kang LH; Malajczuk N; Dell B
    Mycorrhiza; 2006 Jun; 16(4):251-259. PubMed ID: 16534620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal root distribution and soil surface carbon fluxes for one-year-old Pinus radiata trees growing at ambient and elevated carbon dioxide concentration.
    Thomas SM; Whitehead D; Adams JA; Reid JB; Sherlock RR; Leckie AC
    Tree Physiol; 1996; 16(11_12):1015-1021. PubMed ID: 14871796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Distribution of fine root biomass of main planting tree species in Loess Plateau, China].
    Jian SQ; Zhao CY; Fang SM; Yu K
    Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1905-11. PubMed ID: 25345038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root growth and carbohydrate responses in bearing citrus trees following partial canopy removal.
    Eissenstat DM; Duncan LW
    Tree Physiol; 1992 Apr; 10(3):245-57. PubMed ID: 14969982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A density-based approach for the modelling of root architecture: application to Maritime pine (Pinus pinaster Ait.) root systems.
    Dupuy L; Fourcaud T; Stokes A; Danjon F
    J Theor Biol; 2005 Oct; 236(3):323-34. PubMed ID: 15961115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.
    Fernandez I; González-Prieto SJ; Cabaneiro A
    Rapid Commun Mass Spectrom; 2005; 19(22):3199-206. PubMed ID: 16208761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.
    Børja I; De Wit HA; Steffenrem A; Majdi H
    Tree Physiol; 2008 May; 28(5):773-84. PubMed ID: 18316309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing an invasion mechanism for Eucalyptus globulus: Is there evidence of allelopathy?
    Nelson KM; Bisbing S; Grossenbacher DL; Ritter M; Yost JM
    Am J Bot; 2021 Apr; 108(4):607-615. PubMed ID: 33860930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying carbon storage and sequestration by native and non-native forests under contrasting climate types.
    Lázaro-Lobo A; Ruiz-Benito P; Cruz-Alonso V; Castro-Díez P
    Glob Chang Biol; 2023 Aug; 29(16):4530-4542. PubMed ID: 37287121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree stability under wind: simulating uprooting with root breakage using a finite element method.
    Yang M; Défossez P; Danjon F; Fourcaud T
    Ann Bot; 2014 Sep; 114(4):695-709. PubMed ID: 25006178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of ground-penetrating radar to study tree roots in the southeastern United States.
    Butnor JR; Doolittle JA; Kress L; Cohen S; Johnsen KH
    Tree Physiol; 2001 Nov; 21(17):1269-78. PubMed ID: 11696414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Root system spatial distribution of different aged Armeniaca vulgaris cv. Luntaibaixing in arid oasis under irrigation].
    Wang SW; Pan CD
    Ying Yong Sheng Tai Xue Bao; 2012 Sep; 23(9):2353-60. PubMed ID: 23285988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.