These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15465856)

  • 21. Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis.
    Zhao Q; Kurata H
    J Biosci Bioeng; 2010 Aug; 110(2):254-61. PubMed ID: 20547341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dizzy: stochastic simulation of large-scale genetic regulatory networks (supplementary material).
    Ramsey S; Orrell D; Bolouri H
    J Bioinform Comput Biol; 2005 Apr; 3(2):437-54. PubMed ID: 15852514
    [No Abstract]   [Full Text] [Related]  

  • 23. A quadratic programming approach for decomposing steady-state metabolic flux distributions onto elementary modes.
    Schwartz JM; Kanehisa M
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii204-5. PubMed ID: 16204104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach.
    van Riel NA; Sontag ED
    Syst Biol (Stevenage); 2006 Jul; 153(4):263-74. PubMed ID: 16986628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
    Lebiedz D; Kammerer J; Brandt-Pollmann U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041911. PubMed ID: 16383424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-Dependent Gene Network Modelling by Sequential Monte Carlo.
    Ancherbak S; Kuruoglu EE; Vingron M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1183-1193. PubMed ID: 26540693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation.
    Gustafsson M; Hörnquist M; Lombardi A
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):254-61. PubMed ID: 17044188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flux balance analysis in the era of metabolomics.
    Lee JM; Gianchandani EP; Papin JA
    Brief Bioinform; 2006 Jun; 7(2):140-50. PubMed ID: 16772264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical modeling of living cell metabolism using the method of steady-state stoichiometric flux balance.
    Drozdov-Tikhomirov LN; Scurida GI; Davidov AV; Alexandrov AA; Zvyagilskaya RA
    J Bioinform Comput Biol; 2006 Aug; 4(4):865-85. PubMed ID: 17007072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional topology in a network of protein interactions.
    Przulj N; Wigle DA; Jurisica I
    Bioinformatics; 2004 Feb; 20(3):340-8. PubMed ID: 14960460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae.
    Smallbone K; Malys N; Messiha HL; Wishart JA; Simeonidis E
    Methods Enzymol; 2011; 500():355-70. PubMed ID: 21943906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An entropy-like index of bifurcational robustness for metabolic systems.
    Lafontaine Rivera JG; Lee Y; Liao JC
    Integr Biol (Camb); 2015 Aug; 7(8):895-903. PubMed ID: 25855352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Hidden Markov Model approach to predicting yeast gene function from sequential gene expression data.
    Deng X; Geng H; Ali HH
    Int J Bioinform Res Appl; 2008; 4(3):263-73. PubMed ID: 18640903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM).
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A U-system approach for predicting metabolic behaviors and responses based on an alleged metabolic reaction network.
    Sriyudthsak K; Sawada Y; Chiba Y; Yamashita Y; Kanaya S; Onouchi H; Fujiwara T; Naito S; Voit EO; Shiraishi F; Hirai MY
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S4. PubMed ID: 25559748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding signaling in yeast: Insights from network analysis.
    Arga KY; Onsan ZI; Kirdar B; Ulgen KO; Nielsen J
    Biotechnol Bioeng; 2007 Aug; 97(5):1246-58. PubMed ID: 17252576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Gibbs sampler for the identification of gene expression and network connectivity consistency.
    Brynildsen MP; Tran LM; Liao JC
    Bioinformatics; 2006 Dec; 22(24):3040-6. PubMed ID: 17060361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data.
    Sontag E; Kiyatkin A; Kholodenko BN
    Bioinformatics; 2004 Aug; 20(12):1877-86. PubMed ID: 15037511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.