These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 15465866)

  • 1. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes.
    Hinch R; Greenstein JL; Tanskanen AJ; Xu L; Winslow RL
    Biophys J; 2004 Dec; 87(6):3723-36. PubMed ID: 15465866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.
    Greenstein JL; Winslow RL
    Biophys J; 2002 Dec; 83(6):2918-45. PubMed ID: 12496068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysing cardiac excitation-contraction coupling with mathematical models of local control.
    Soeller C; Cannell MB
    Prog Biophys Mol Biol; 2004; 85(2-3):141-62. PubMed ID: 15142741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte.
    Greenstein JL; Hinch R; Winslow RL
    Biophys J; 2006 Jan; 90(1):77-91. PubMed ID: 16214852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes.
    Williams GS; Huertas MA; Sobie EA; Jafri MS; Smith GD
    Biophys J; 2007 Apr; 92(7):2311-28. PubMed ID: 17237200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local is as local does: the unitary nature of SR Ca2+ release in cardiac ventricular myocytes.
    Fowler MR
    J Physiol; 2009 Jan; 587(2):301-2. PubMed ID: 19015191
    [No Abstract]   [Full Text] [Related]  

  • 7. Sensitized signalling between L-type Ca2+ channels and ryanodine receptors in the absence or inhibition of FKBP12.6 in cardiomyocytes.
    Zhao YT; Guo YB; Gu L; Fan XX; Yang HQ; Chen Z; Zhou P; Yuan Q; Ji GJ; Wang SQ
    Cardiovasc Res; 2017 Mar; 113(3):332-342. PubMed ID: 28077437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microscopic mechanism of excitation-contraction coupling in cardiac myocytes].
    Shen JX; Han TZ; Cheng HP
    Sheng Li Ke Xue Jin Zhan; 2004 Oct; 35(4):294-8. PubMed ID: 15727204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle.
    Bondarenko VE; Bett GC; Rasmusson RL
    Am J Physiol Heart Circ Physiol; 2004 Mar; 286(3):H1154-69. PubMed ID: 14630639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein geometry and placement in the cardiac dyad influence macroscopic properties of calcium-induced calcium release.
    Tanskanen AJ; Greenstein JL; Chen A; Sun SX; Winslow RL
    Biophys J; 2007 May; 92(10):3379-96. PubMed ID: 17325016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle.
    Szentesi P; Pignier C; Egger M; Kranias EG; Niggli E
    Circ Res; 2004 Oct; 95(8):807-13. PubMed ID: 15388639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moment closure for local control models of calcium-induced calcium release in cardiac myocytes.
    Williams GS; Huertas MA; Sobie EA; Jafri MS; Smith GD
    Biophys J; 2008 Aug; 95(4):1689-703. PubMed ID: 18487291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release.
    Griffiths H; MacLeod KT
    J Gen Physiol; 2003 May; 121(5):353-73. PubMed ID: 12719483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A univariate model of calcium release in the dyadic cleft of cardiac myocytes.
    Fan J; Yu Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4499-503. PubMed ID: 19964372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Ca2+ signalling in rat atrial myocytes: possible role of the alpha1C carboxyl terminal.
    Woo SH; Soldatov NM; Morad M
    J Physiol; 2003 Oct; 552(Pt 2):437-47. PubMed ID: 14561827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors.
    Stern MD; Song LS; Cheng H; Sham JS; Yang HT; Boheler KR; Ríos E
    J Gen Physiol; 1999 Mar; 113(3):469-89. PubMed ID: 10051521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency and release flux of calcium sparks in rat cardiac myocytes: a relation to RYR gating.
    Zahradníková A; Valent I; Zahradník I
    J Gen Physiol; 2010 Jul; 136(1):101-16. PubMed ID: 20548054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triadin overexpression stimulates excitation-contraction coupling and increases predisposition to cellular arrhythmia in cardiac myocytes.
    Terentyev D; Cala SE; Houle TD; Viatchenko-Karpinski S; Gyorke I; Terentyeva R; Williams SC; Gyorke S
    Circ Res; 2005 Apr; 96(6):651-8. PubMed ID: 15731460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure.
    Fukumoto GH; Lamp ST; Motter C; Bridge JH; Garfinkel A; Goldhaber JI
    Circ Res; 2005 Mar; 96(5):551-7. PubMed ID: 15718501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.