BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15465964)

  • 1. Genes outside the S supergene suppress S functions in buckwheat (Fagopyrum esculentum).
    Matsui K; Nishio T; Tetsuka T
    Ann Bot; 2004 Dec; 94(6):805-9. PubMed ID: 15465964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteromorphic incompatibility retained in self-compatible plants produced by a cross between common and wild buckwheat.
    Matsui K; Tetsuka T; Nishio T; Hara T
    New Phytol; 2003 Sep; 159(3):701-708. PubMed ID: 33873587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yield of common buckwheat (Fagopyrum esculentum Moench) depends on the genotype but not on the Pin-to-Thrum ratio.
    Płażek A; Kopeć P; Dziurka M; Słomka A
    Sci Rep; 2023 Sep; 13(1):16022. PubMed ID: 37749231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum).
    Takeshima R; Nishio T; Komatsu S; Kurauchi N; Matsui K
    Heredity (Edinb); 2019 Oct; 123(4):492-502. PubMed ID: 31076649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus.
    Li J; Webster M; Furuya M; Gilmartin PM
    Plant J; 2007 Jul; 51(1):18-31. PubMed ID: 17561923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility.
    Yasui Y; Mori M; Aii J; Abe T; Matsumoto D; Sato S; Hayashi Y; Ohnishi O; Ota T
    PLoS One; 2012; 7(2):e31264. PubMed ID: 22312442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Functional fragments of a relictual gametophytic self-incompatibility system are associated with the loci determining flower type of the heterostylous outcrosser Fagopyrum esculentum Moench. and the homostylous selfer F. homotropicum ohnishi].
    Fesenko NN; Fesenko IN
    Genetika; 2011 Jan; 47(1):48-56. PubMed ID: 21446182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buckwheat heteromorphic self-incompatibility: genetics, genomics and application to breeding.
    Matsui K; Yasui Y
    Breed Sci; 2020 Mar; 70(1):32-38. PubMed ID: 32351302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation analysis of floral parts revealed dynamic changes during the development of homostylous Fagopyrum tataricum and heterostylous F. esculentum flowers.
    Sala-Cholewa K; Tomasiak A; Nowak K; Piński A; Betekhtin A
    BMC Plant Biol; 2024 May; 24(1):448. PubMed ID: 38783206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Homostyly as an efficient tool for development of homozygous lines of buckwheat (Fagopyrum esculentum Moench)].
    Kovalenko VI; Shumnyĭ VK
    Tsitol Genet; 2002; 36(1):3-13. PubMed ID: 12012593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae).
    Wu X; Li A; Zhang D
    Plant Biol (Stuttg); 2010 May; 12(3):484-94. PubMed ID: 20522185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomics Investigation into the Mechanisms of Self-Incompatibility between Pin and Thrum Morphs of
    Lu W; Bian X; Yang W; Cheng T; Wang J; Zhang Q; Pan H
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29932122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of late stage flower development in Primula vulgaris reveals novel differences in cell morphology and temporal aspects of floral heteromorphy.
    Webster MA; Gilmartin PM
    New Phytol; 2006; 171(3):591-603. PubMed ID: 16866961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterostyly promotes compatible pollination in buckwheats: Comparisons of intraflower, intraplant, and interplant pollen flow in distylous and homostylous Fagopyrum.
    Wu LY; Chang FF; Liu SJ; Scott Armbruster W; Huang SQ
    Am J Bot; 2018 Jan; 105(1):108-116. PubMed ID: 29532921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of co-dominant markers linked to a hemizygous region that is related to the self-compatibility locus (
    Matsui K; Mizuno N; Ueno M; Takeshima R; Yasui Y
    Breed Sci; 2020 Mar; 70(1):112-117. PubMed ID: 32351310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene flow signature in the S-allele region of cultivated buckwheat.
    Mizuno N; Yasui Y
    BMC Plant Biol; 2019 Apr; 19(1):125. PubMed ID: 30943914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene.
    Cocker JM; Wright J; Li J; Swarbreck D; Dyer S; Caccamo M; Gilmartin PM
    Sci Rep; 2018 Dec; 8(1):17942. PubMed ID: 30560928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FaesAP3_1 Regulates the
    Ma Z; Yang Q; Zeng L; Li J; Jiao X; Liu Z
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic architecture and evolution of the S locus supergene in Primula vulgaris.
    Li J; Cocker JM; Wright J; Webster MA; McMullan M; Dyer S; Swarbreck D; Caccamo M; Oosterhout CV; Gilmartin PM
    Nat Plants; 2016 Dec; 2(12):16188. PubMed ID: 27909301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inheritance of pollen-less anthers and "thrum" and "pin" flowers in periwinkle.
    Kulkarni RN; Baskaran K
    J Hered; 2008; 99(4):426-31. PubMed ID: 18339651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.