BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 15466240)

  • 1. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis.
    Panikulangara TJ; Eggers-Schumacher G; Wunderlich M; Stransky H; Schöffl F
    Plant Physiol; 2004 Oct; 136(2):3148-58. PubMed ID: 15466240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage.
    Nishizawa A; Yabuta Y; Shigeoka S
    Plant Physiol; 2008 Jul; 147(3):1251-63. PubMed ID: 18502973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.
    Song C; Chung WS; Lim CO
    Mol Cells; 2016 Jun; 39(6):477-83. PubMed ID: 27109422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants.
    Prändl R; Hinderhofer K; Eggers-Schumacher G; Schöffl F
    Mol Gen Genet; 1998 May; 258(3):269-78. PubMed ID: 9645433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-Inducible Galactinol Synthase of Chickpea (CaGolS) is Implicated in Heat and Oxidative Stress Tolerance Through Reducing Stress-Induced Excessive Reactive Oxygen Species Accumulation.
    Salvi P; Kamble NU; Majee M
    Plant Cell Physiol; 2018 Jan; 59(1):155-166. PubMed ID: 29121266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.
    Taji T; Ohsumi C; Iuchi S; Seki M; Kasuga M; Kobayashi M; Yamaguchi-Shinozaki K; Shinozaki K
    Plant J; 2002 Feb; 29(4):417-26. PubMed ID: 11846875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis.
    Lohmann C; Eggers-Schumacher G; Wunderlich M; Schöffl F
    Mol Genet Genomics; 2004 Feb; 271(1):11-21. PubMed ID: 14655047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis.
    Lee JH; Hübel A; Schöffl F
    Plant J; 1995 Oct; 8(4):603-12. PubMed ID: 7496404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A.
    Gu L; Zhang Y; Zhang M; Li T; Dirk LM; Downie B; Zhao T
    Plant Mol Biol; 2016 Jan; 90(1-2):157-70. PubMed ID: 26584560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis.
    Gu L; Jiang T; Zhang C; Li X; Wang C; Zhang Y; Li T; Dirk LMA; Downie AB; Zhao T
    Plant J; 2019 Oct; 100(1):128-142. PubMed ID: 31180156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2.
    Nishizawa-Yokoi A; Yoshida E; Yabuta Y; Shigeoka S
    Biosci Biotechnol Biochem; 2009 Apr; 73(4):890-5. PubMed ID: 19352026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of BnHSFA4a as a heat shock transcription factor in controlling the re-establishment of desiccation tolerance in seeds.
    Lang S; Liu X; Xue H; Li X; Wang X
    J Exp Bot; 2017 Apr; 68(9):2361-2375. PubMed ID: 28369570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression.
    Qian J; Chen J; Liu YF; Yang LL; Li WP; Zhang LM
    Genet Mol Res; 2014 Feb; 13(1):1233-43. PubMed ID: 24634180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana.
    Gong B; Yi J; Wu J; Sui J; Khan MA; Wu Z; Zhong X; Seng S; He J; Yi M
    Plant Cell Rep; 2014 Sep; 33(9):1519-33. PubMed ID: 24874231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress.
    Nishizawa A; Yabuta Y; Yoshida E; Maruta T; Yoshimura K; Shigeoka S
    Plant J; 2006 Nov; 48(4):535-47. PubMed ID: 17059409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis.
    Panchuk II; Volkov RA; Schöffl F
    Plant Physiol; 2002 Jun; 129(2):838-53. PubMed ID: 12068123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poaceae Type II Galactinol Synthase 2 from Antarctic Flowering Plant Deschampsia antarctica and Rice Improves Cold and Drought Tolerance by Accumulation of Raffinose Family Oligosaccharides in Transgenic Rice Plants.
    Cui LH; Byun MY; Oh HG; Kim SJ; Lee J; Park H; Lee H; Kim WT
    Plant Cell Physiol; 2020 Jan; 61(1):88-104. PubMed ID: 31513272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.
    Ikeda M; Mitsuda N; Ohme-Takagi M
    Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress.
    Nishizawa-Yokoi A; Nosaka R; Hayashi H; Tainaka H; Maruta T; Tamoi M; Ikeda M; Ohme-Takagi M; Yoshimura K; Yabuta Y; Shigeoka S
    Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.