BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 15466428)

  • 1. Communication between parental and developing genomes during tetrahymena nuclear differentiation is likely mediated by homologous RNAs.
    Chalker DL; Fuller P; Yao MC
    Genetics; 2005 Jan; 169(1):149-60. PubMed ID: 15466428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small RNAs in genome rearrangement in Tetrahymena.
    Mochizuki K; Gorovsky MA
    Curr Opin Genet Dev; 2004 Apr; 14(2):181-7. PubMed ID: 15196465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement.
    Mochizuki K; Gorovsky MA
    Genes Dev; 2004 Sep; 18(17):2068-73. PubMed ID: 15314029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena.
    Mochizuki K; Fine NA; Fujisawa T; Gorovsky MA
    Cell; 2002 Sep; 110(6):689-99. PubMed ID: 12297043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila.
    Malone CD; Anderson AM; Motl JA; Rexer CH; Chalker DL
    Mol Cell Biol; 2005 Oct; 25(20):9151-64. PubMed ID: 16199890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic nuclear reorganization during genome remodeling of Tetrahymena.
    Chalker DL
    Biochim Biophys Acta; 2008 Nov; 1783(11):2130-6. PubMed ID: 18706458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic distributions of long double-stranded RNA in Tetrahymena during nuclear development and genome rearrangements.
    Woo TT; Chao JL; Yao MC
    J Cell Sci; 2016 Mar; 129(5):1046-58. PubMed ID: 26769902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism.
    Kowalczyk CA; Anderson AM; Arce-Larreta M; Chalker DL
    Nucleic Acids Res; 2006; 34(20):5778-89. PubMed ID: 17053100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two GW repeat proteins interact with Tetrahymena thermophila argonaute and promote genome rearrangement.
    Bednenko J; Noto T; DeSouza LV; Siu KW; Pearlman RE; Mochizuki K; Gorovsky MA
    Mol Cell Biol; 2009 Sep; 29(18):5020-30. PubMed ID: 19596782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lia1p, a novel protein required during nuclear differentiation for genome-wide DNA rearrangements in Tetrahymena thermophila.
    Rexer CH; Chalker DL
    Eukaryot Cell; 2007 Aug; 6(8):1320-9. PubMed ID: 17586719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila.
    Chalker DL; Yao MC
    Genes Dev; 2001 May; 15(10):1287-98. PubMed ID: 11358871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the transcription inhibitor actinomycin D on postzygotic development of Tetrahymena thermophila conjugants.
    Ward JG; Herrick G
    Dev Biol; 1996 Jan; 173(1):174-84. PubMed ID: 8575619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila.
    Cheng CY; Young JM; Lin CG; Chao JL; Malik HS; Yao MC
    Genes Dev; 2016 Dec; 30(24):2724-2736. PubMed ID: 28087716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular biology. A self-help guide for a trim genome.
    Selker EU
    Science; 2003 Jun; 300(5625):1517-8. PubMed ID: 12791973
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena.
    Yao MC; Yao CH; Halasz LM; Fuller P; Rexer CH; Wang SH; Jain R; Coyne RS; Chalker DL
    J Cell Sci; 2007 Jun; 120(Pt 12):1978-89. PubMed ID: 17519286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed DNA deletion as an RNA-guided system of genome defense.
    Yao MC; Fuller P; Xi X
    Science; 2003 Jun; 300(5625):1581-4. PubMed ID: 12791996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the germline genome of
    Hamilton EP; Kapusta A; Huvos PE; Bidwell SL; Zafar N; Tang H; Hadjithomas M; Krishnakumar V; Badger JH; Caler EV; Russ C; Zeng Q; Fan L; Levin JZ; Shea T; Young SK; Hegarty R; Daza R; Gujja S; Wortman JR; Birren BW; Nusbaum C; Thomas J; Carey CM; Pritham EJ; Feschotte C; Noto T; Mochizuki K; Papazyan R; Taverna SD; Dear PH; Cassidy-Hanley DM; Xiong J; Miao W; Orias E; Coyne RS
    Elife; 2016 Nov; 5():. PubMed ID: 27892853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA.
    Chalker DL; Yao MC
    Mol Cell Biol; 1996 Jul; 16(7):3658-67. PubMed ID: 8668182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA elimination in ciliates: transposon domestication and genome surveillance.
    Chalker DL; Yao MC
    Annu Rev Genet; 2011; 45():227-46. PubMed ID: 21910632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes.
    Orias E; Cervantes MD; Hamilton EP
    Res Microbiol; 2011; 162(6):578-86. PubMed ID: 21624459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.