These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15466509)

  • 1. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling.
    Straub KL; Schink B
    Appl Environ Microbiol; 2004 Oct; 70(10):5744-9. PubMed ID: 15466509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum.
    Lohmayer R; Kappler A; Lösekann-Behrens T; Planer-Friedrich B
    Appl Environ Microbiol; 2014 May; 80(10):3141-9. PubMed ID: 24632263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
    Hansel CM; Lentini CJ; Tang Y; Johnston DT; Wankel SD; Jardine PM
    ISME J; 2015 Nov; 9(11):2400-12. PubMed ID: 25871933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment.
    Finster K; Liesack W; Thamdrup B
    Appl Environ Microbiol; 1998 Jan; 64(1):119-25. PubMed ID: 9435068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of electron-shuttling compounds in microbial ferric iron reduction.
    Straub KL; Schink B
    FEMS Microbiol Lett; 2003 Mar; 220(2):229-33. PubMed ID: 12670685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1.
    Zhu F; Huang Y; Ni H; Tang J; Zhu Q; Long ZE; Zou L
    Chemosphere; 2022 Feb; 288(Pt 3):132661. PubMed ID: 34699878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria.
    Straub KL; Hanzlik M; Buchholz-Cleven BE
    Syst Appl Microbiol; 1998 Aug; 21(3):442-9. PubMed ID: 9779609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin.
    Berg JS; Jézéquel D; Duverger A; Lamy D; Laberty-Robert C; Miot J
    PLoS One; 2019; 14(2):e0212787. PubMed ID: 30794698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur-Driven Iron Reduction Coupled to Anaerobic Ammonium Oxidation.
    Bao P; Li GX
    Environ Sci Technol; 2017 Jun; 51(12):6691-6698. PubMed ID: 28558234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction.
    MacDonald LH; Moon HS; Jaffé PR
    Water Res; 2011 Jan; 45(3):1049-62. PubMed ID: 21111440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.
    Mora M; López LR; Lafuente J; Pérez J; Kleerebezem R; van Loosdrecht MC; Gamisans X; Gabriel D
    Water Res; 2016 Feb; 89():282-92. PubMed ID: 26704759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron (oxyhydr)oxides shift the methanogenic community in deep sea methanic sediment - insights from long-term high-pressure incubations.
    Liang L; Vigderovich H; Sivan O; Hou J; Niu M; Yorshansky O; Zhang T; Bosco-Santos A; Wang F
    Sci Total Environ; 2022 Nov; 848():157590. PubMed ID: 35901888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur-mediated electron shuttling during bacterial iron reduction.
    Flynn TM; O'Loughlin EJ; Mishra B; DiChristina TJ; Kemner KM
    Science; 2014 May; 344(6187):1039-42. PubMed ID: 24789972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems.
    Saalfield SL; Bostick BC
    Environ Sci Technol; 2009 Dec; 43(23):8787-93. PubMed ID: 19943647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS.
    Kucera J; Bouchal P; Cerna H; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Antonie Van Leeuwenhoek; 2012 Mar; 101(3):561-73. PubMed ID: 22057833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria.
    Straub KL; Schink B
    Arch Microbiol; 2004 Oct; 182(2-3):175-81. PubMed ID: 15340790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms.
    Luijten ML; Weelink SA; Godschalk B; Langenhoff AA; van Eekert MH; Schraa G; Stams AJ
    FEMS Microbiol Ecol; 2004 Jul; 49(1):145-50. PubMed ID: 19712392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake.
    Sorokin DY; Antipov AN; Kuenen JG
    Arch Microbiol; 2003 Aug; 180(2):127-33. PubMed ID: 12827218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.