These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
954 related articles for article (PubMed ID: 15466518)
1. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Duncan SH; Louis P; Flint HJ Appl Environ Microbiol; 2004 Oct; 70(10):5810-7. PubMed ID: 15466518 [TBL] [Abstract][Full Text] [Related]
2. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. Sato T; Matsumoto K; Okumura T; Yokoi W; Naito E; Yoshida Y; Nomoto K; Ito M; Sawada H FEMS Microbiol Ecol; 2008 Dec; 66(3):528-36. PubMed ID: 18554304 [TBL] [Abstract][Full Text] [Related]
3. Lactate has the potential to promote hydrogen sulphide formation in the human colon. Marquet P; Duncan SH; Chassard C; Bernalier-Donadille A; Flint HJ FEMS Microbiol Lett; 2009 Oct; 299(2):128-34. PubMed ID: 19732152 [TBL] [Abstract][Full Text] [Related]
4. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Belenguer A; Duncan SH; Calder AG; Holtrop G; Louis P; Lobley GE; Flint HJ Appl Environ Microbiol; 2006 May; 72(5):3593-9. PubMed ID: 16672507 [TBL] [Abstract][Full Text] [Related]
5. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Moens F; De Vuyst L Benef Microbes; 2017 May; 8(3):473-490. PubMed ID: 28548573 [TBL] [Abstract][Full Text] [Related]
6. Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. Muñoz-Tamayo R; Laroche B; Walter E; Doré J; Duncan SH; Flint HJ; Leclerc M FEMS Microbiol Ecol; 2011 Jun; 76(3):615-24. PubMed ID: 21388423 [TBL] [Abstract][Full Text] [Related]
7. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Hold GL; Schwiertz A; Aminov RI; Blaut M; Flint HJ Appl Environ Microbiol; 2003 Jul; 69(7):4320-4. PubMed ID: 12839823 [TBL] [Abstract][Full Text] [Related]
8. Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Ohashi Y; Sumitani K; Tokunaga M; Ishihara N; Okubo T; Fujisawa T Benef Microbes; 2015; 6(4):451-5. PubMed ID: 25519526 [TBL] [Abstract][Full Text] [Related]
9. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Kovatcheva-Datchary P; Egert M; Maathuis A; Rajilić-Stojanović M; de Graaf AA; Smidt H; de Vos WM; Venema K Environ Microbiol; 2009 Apr; 11(4):914-26. PubMed ID: 19128319 [TBL] [Abstract][Full Text] [Related]
10. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Duncan SH; Hold GL; Barcenilla A; Stewart CS; Flint HJ Int J Syst Evol Microbiol; 2002 Sep; 52(Pt 5):1615-1620. PubMed ID: 12361264 [TBL] [Abstract][Full Text] [Related]
11. The microbiology of butyrate formation in the human colon. Pryde SE; Duncan SH; Hold GL; Stewart CS; Flint HJ FEMS Microbiol Lett; 2002 Dec; 217(2):133-9. PubMed ID: 12480096 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Barcenilla A; Pryde SE; Martin JC; Duncan SH; Stewart CS; Henderson C; Flint HJ Appl Environ Microbiol; 2000 Apr; 66(4):1654-61. PubMed ID: 10742256 [TBL] [Abstract][Full Text] [Related]
13. Lactate cross-feeding between Zhao S; Lau R; Zhong Y; Chen M-H Appl Environ Microbiol; 2024 Jan; 90(1):e0101923. PubMed ID: 38126785 [TBL] [Abstract][Full Text] [Related]
14. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Louis P; Young P; Holtrop G; Flint HJ Environ Microbiol; 2010 Feb; 12(2):304-14. PubMed ID: 19807780 [TBL] [Abstract][Full Text] [Related]
15. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. Allen-Vercoe E; Daigneault M; White A; Panaccione R; Duncan SH; Flint HJ; O'Neal L; Lawson PA Anaerobe; 2012 Oct; 18(5):523-9. PubMed ID: 22982042 [TBL] [Abstract][Full Text] [Related]
16. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. Rios-Covian D; Gueimonde M; Duncan SH; Flint HJ; de los Reyes-Gavilan CG FEMS Microbiol Lett; 2015 Nov; 362(21):. PubMed ID: 26420851 [TBL] [Abstract][Full Text] [Related]
17. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Moens F; Verce M; De Vuyst L Int J Food Microbiol; 2017 Jan; 241():225-236. PubMed ID: 27810444 [TBL] [Abstract][Full Text] [Related]
18. Characterization of an O-desmethylangolensin-producing bacterium isolated from human feces. Yokoyama S; Niwa T; Osawa T; Suzuki T Arch Microbiol; 2010 Jan; 192(1):15-22. PubMed ID: 19904524 [TBL] [Abstract][Full Text] [Related]
19. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Aminov RI; Walker AW; Duncan SH; Harmsen HJ; Welling GW; Flint HJ Appl Environ Microbiol; 2006 Sep; 72(9):6371-6. PubMed ID: 16957265 [TBL] [Abstract][Full Text] [Related]
20. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Bunesova V; Lacroix C; Schwab C Microb Ecol; 2018 Jan; 75(1):228-238. PubMed ID: 28721502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]