These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 15467004)
1. Reduced tolerance of immature renal tubules to anoxia by HSF-1 decoy. Sreedharan R; Riordan M; Wang S; Thulin G; Kashgarian M; Siegel NJ Am J Physiol Renal Physiol; 2005 Feb; 288(2):F322-6. PubMed ID: 15467004 [TBL] [Abstract][Full Text] [Related]
2. Developmental expression of HSP-72 and ischemic tolerance of the immature kidney. Vicencio A; Bidmon B; Ryu J; Reidy K; Thulin G; Mann A; Gaudio KM; Kashgarian M; Siegel NJ Pediatr Nephrol; 2003 Feb; 18(2):85-91. PubMed ID: 12579393 [TBL] [Abstract][Full Text] [Related]
3. Role of heat stress response in the tolerance of immature renal tubules to anoxia. Gaudio KM; Thulin G; Mann A; Kashgarian M; Siegel NJ Am J Physiol; 1998 Jun; 274(6):F1029-36. PubMed ID: 9841493 [TBL] [Abstract][Full Text] [Related]
4. Increased immunogenicity is an integral part of the heat shock response following renal ischemia. Bidmon B; Kratochwill K; Rusai K; Kuster L; Herzog R; Eickelberg O; Aufricht C Cell Stress Chaperones; 2012 May; 17(3):385-97. PubMed ID: 22180342 [TBL] [Abstract][Full Text] [Related]
5. [Transfection of nuclear factor-kappaB decoy oligodeoxynucleotides prevents ischemic acute renal failure in rats]. Cao CC; Ding XQ; Ou ZL; Liu CF; Li P; Wang L; Zhu CF Zhonghua Yi Xue Za Zhi; 2003 Sep; 83(18):1597-602. PubMed ID: 14642117 [TBL] [Abstract][Full Text] [Related]
6. Small interfering RNA knocks down heat shock factor-1 (HSF-1) and exacerbates pro-inflammatory activation of NF-kappaB and AP-1 in vascular smooth muscle cells. Chen Y; Currie RW Cardiovasc Res; 2006 Jan; 69(1):66-75. PubMed ID: 16061216 [TBL] [Abstract][Full Text] [Related]
7. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response. Shamovsky I; Gershon D Mech Ageing Dev; 2004; 125(10-11):767-75. PubMed ID: 15541771 [TBL] [Abstract][Full Text] [Related]
8. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy. Locke M Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955 [TBL] [Abstract][Full Text] [Related]
9. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression. Mivechi NF; Shi XY; Hahn GM J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320 [TBL] [Abstract][Full Text] [Related]
10. Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1. Heydari AR; You S; Takahashi R; Gutsmann A; Sarge KD; Richardson A Dev Genet; 1996; 18(2):114-24. PubMed ID: 8934873 [TBL] [Abstract][Full Text] [Related]
11. Glycolysis is not responsible for the tolerance of immature renal tubules to anoxia. Gaudio KM; Thulin G; Siegel NJ Pediatr Res; 1996 Sep; 40(3):457-61. PubMed ID: 8865284 [TBL] [Abstract][Full Text] [Related]
12. Ablation of the heat shock factor-1 increases susceptibility to hyperoxia-mediated cellular injury. Malhotra V; Kooy NW; Denenberg AG; Dunsmore KE; Wong HR Exp Lung Res; 2002 Dec; 28(8):609-22. PubMed ID: 12490036 [TBL] [Abstract][Full Text] [Related]
13. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Bruce JL; Price BD; Coleman CN; Calderwood SK Cancer Res; 1993 Jan; 53(1):12-5. PubMed ID: 8416735 [TBL] [Abstract][Full Text] [Related]
14. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding. Saltsman KA; Prentice HL; Kingston RE Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818 [TBL] [Abstract][Full Text] [Related]
15. Bacterial endotoxin modifies heat shock factor-1 activity in RAW 264.7 cells: implications for TNF-alpha regulation during exposure to febrile range temperatures. Singh IS; He JR; Hester L; Fenton MJ; Hasday JD J Endotoxin Res; 2004; 10(3):175-84. PubMed ID: 15198852 [TBL] [Abstract][Full Text] [Related]
16. Previous heat shock facilitates the glutamine-induced expression of heat-shock protein 72 in septic liver. Wang SJ; Chen HW; Huang MH; Yang RC Nutrition; 2007; 23(7-8):582-8. PubMed ID: 17616344 [TBL] [Abstract][Full Text] [Related]
17. Role of an alpha-helical bulge in the yeast heat shock transcription factor. Hardy JA; Walsh ST; Nelson HC J Mol Biol; 2000 Jan; 295(3):393-409. PubMed ID: 10623534 [TBL] [Abstract][Full Text] [Related]
18. Role of HSF activation for resistance to heat, cold and high-temperature knock-down. Nielsen MM; Overgaard J; Sørensen JG; Holmstrup M; Justesen J; Loeschcke V J Insect Physiol; 2005 Dec; 51(12):1320-9. PubMed ID: 16169555 [TBL] [Abstract][Full Text] [Related]
19. The atrial natriuretic peptide and cGMP: novel activators of the heat shock response in rat livers. Kiemer AK; Gerbes AL; Bilzer M; Vollmar AM Hepatology; 2002 Jan; 35(1):88-94. PubMed ID: 11786963 [TBL] [Abstract][Full Text] [Related]
20. Heat preconditioning attenuates renal injury in ischemic ARF in rats: role of heat-shock protein 70 on NF-kappaB-mediated inflammation and on tubular cell injury. Jo SK; Ko GJ; Boo CS; Cho WY; Kim HK J Am Soc Nephrol; 2006 Nov; 17(11):3082-92. PubMed ID: 17021270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]