These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 15467708)
1. Amphetamine-induced Fos is reduced in limbic cortical regions but not in the caudate or accumbens in a genetic model of NMDA receptor hypofunction. Miyamoto S; Snouwaert JN; Koller BH; Moy SS; Lieberman JA; Duncan GE Neuropsychopharmacology; 2004 Dec; 29(12):2180-8. PubMed ID: 15467708 [TBL] [Abstract][Full Text] [Related]
2. Increased sensitivity to kainic acid in a genetic model of reduced NMDA receptor function. Duncan GE; Inada K; Koller BH; Moy SS Brain Res; 2010 Jan; 1307():166-76. PubMed ID: 19840778 [TBL] [Abstract][Full Text] [Related]
3. Alterations in regional brain metabolism in genetic and pharmacological models of reduced NMDA receptor function. Duncan G; Miyamoto S; Gu H; Lieberman J; Koller B; Snouwaert J Brain Res; 2002 Oct; 951(2):166-76. PubMed ID: 12270494 [TBL] [Abstract][Full Text] [Related]
4. Repeated amphetamine administration outside the home cage enhances drug-induced Fos expression in rat nucleus accumbens. Mattson BJ; Crombag HS; Mitchell T; Simmons DE; Kreuter JD; Morales M; Hope BT Behav Brain Res; 2007 Dec; 185(2):88-98. PubMed ID: 17720257 [TBL] [Abstract][Full Text] [Related]
5. Amphetamine-induced disruption of prepulse inhibition in mice with reduced NMDA receptor function. Moy SS; Perez A; Koller BH; Duncan GE Brain Res; 2006 May; 1089(1):186-94. PubMed ID: 16638606 [TBL] [Abstract][Full Text] [Related]
6. Nucleus accumbens NMDA receptor subunit expression and function is enhanced in morphine-dependent rats. Murray F; Harrison NJ; Grimwood S; Bristow LJ; Hutson PH Eur J Pharmacol; 2007 May; 562(3):191-7. PubMed ID: 17321516 [TBL] [Abstract][Full Text] [Related]
7. Neural activation deficits in a mouse genetic model of NMDA receptor hypofunction in tests of social aggression and swim stress. Duncan GE; Inada K; Farrington JS; Koller BH; Moy SS Brain Res; 2009 Apr; 1265():186-95. PubMed ID: 19232330 [TBL] [Abstract][Full Text] [Related]
8. Effects of the D(3) dopamine receptor antagonist, U99194A, on brain stimulation and d-amphetamine reward, motor activity, and c-fos expression in ad libitum fed and food-restricted rats. Carr KD; Yamamoto N; Omura M; Cabeza de Vaca S; Krahne L Psychopharmacology (Berl); 2002 Aug; 163(1):76-84. PubMed ID: 12185403 [TBL] [Abstract][Full Text] [Related]
9. Behavioral and biochemical responses to d-amphetamine in MCH1 receptor knockout mice. Smith DG; Qi H; Svenningsson P; Wade M; Davis RJ; Gehlert DR; Nomikos GG Synapse; 2008 Feb; 62(2):128-36. PubMed ID: 18000809 [TBL] [Abstract][Full Text] [Related]
10. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction. Nakao K; Jeevakumar V; Jiang SZ; Fujita Y; Diaz NB; Pretell Annan CA; Eskow Jaunarajs KL; Hashimoto K; Belforte JE; Nakazawa K Schizophr Bull; 2019 Jan; 45(1):138-147. PubMed ID: 29394409 [TBL] [Abstract][Full Text] [Related]
11. Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Trinh JV; Nehrenberg DL; Jacobsen JP; Caron MG; Wetsel WC Neuroscience; 2003; 118(2):297-310. PubMed ID: 12699766 [TBL] [Abstract][Full Text] [Related]
12. Seizure responses and induction of Fos by the NMDA agonist (tetrazol-5-yl)glycine in a genetic model of NMDA receptor hypofunction. Duncan GE; Inada K; Farrington JS; Koller BH Brain Res; 2008 Jul; 1221():41-8. PubMed ID: 18550035 [TBL] [Abstract][Full Text] [Related]
13. Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Duncan GE; Moy SS; Perez A; Eddy DM; Zinzow WM; Lieberman JA; Snouwaert JN; Koller BH Behav Brain Res; 2004 Aug; 153(2):507-19. PubMed ID: 15265649 [TBL] [Abstract][Full Text] [Related]
14. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters. Bradley KC; Meisel RL J Neurosci; 2001 Mar; 21(6):2123-30. PubMed ID: 11245696 [TBL] [Abstract][Full Text] [Related]
15. DeltaFosB accumulation in ventro-medial caudate underlies the induction but not the expression of behavioral sensitization by both repeated amphetamine and stress. Conversi D; Bonito-Oliva A; Orsini C; Colelli V; Cabib S Eur J Neurosci; 2008 Jan; 27(1):191-201. PubMed ID: 18184321 [TBL] [Abstract][Full Text] [Related]
16. Altered N-methyl-D-aspartate receptor function in reelin heterozygous mice: male-female differences and comparison with dopaminergic activity. van den Buuse M; Halley P; Hill R; Labots M; Martin S Prog Neuropsychopharmacol Biol Psychiatry; 2012 Jun; 37(2):237-46. PubMed ID: 22361156 [TBL] [Abstract][Full Text] [Related]
17. Environmental context modulates the ability of cocaine and amphetamine to induce c-fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Uslaner J; Badiani A; Day HE; Watson SJ; Akil H; Robinson TE Brain Res; 2001 Nov; 920(1-2):106-16. PubMed ID: 11716816 [TBL] [Abstract][Full Text] [Related]
18. Effects of ketamine, MK-801, and amphetamine on regional brain 2-deoxyglucose uptake in freely moving mice. Miyamoto S; Leipzig JN; Lieberman JA; Duncan GE Neuropsychopharmacology; 2000 Apr; 22(4):400-12. PubMed ID: 10700659 [TBL] [Abstract][Full Text] [Related]
19. Fos expression following activation of the ventral pallidum in normal rats and in a model of Parkinson's Disease: implications for limbic system and basal ganglia interactions. Turner MS; Gray TS; Mickiewicz AL; Napier TC Brain Struct Funct; 2008 Sep; 213(1-2):197-213. PubMed ID: 18663473 [TBL] [Abstract][Full Text] [Related]
20. Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate. Kuczenski R; Segal DS Psychopharmacology (Berl); 1999 Nov; 147(1):96-103. PubMed ID: 10591874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]