These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15467876)

  • 1. Hydrogen storage of metal nitride by a mechanochemical reaction.
    Kojima Y; Kawai Y
    Chem Commun (Camb); 2004 Oct; (19):2210-1. PubMed ID: 15467876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first-principles investigation of LiNH(2) as a hydrogen-storage material: effects of substitutions of K and Mg for Li.
    Zhang C; Alavi A
    J Phys Chem B; 2006 Apr; 110(14):7139-43. PubMed ID: 16599477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH(2)/MgH(2) system.
    Liang C; Liu Y; Luo K; Li B; Gao M; Pan H; Wang Q
    Chemistry; 2010 Jan; 16(2):693-702. PubMed ID: 19876977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics.
    Kim KC; Kulkarni AD; Johnson JK; Sholl DS
    Phys Chem Chem Phys; 2011 Apr; 13(15):7218-29. PubMed ID: 21409194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of hydrogen with metal nitrides and imides.
    Chen P; Xiong Z; Luo J; Lin J; Tan KL
    Nature; 2002 Nov; 420(6913):302-4. PubMed ID: 12447436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.
    Alapati SV; Johnson JK; Sholl DS
    J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2.
    Pan H; Shi S; Liu Y; Li B; Yang Y; Gao M
    Dalton Trans; 2013 Mar; 42(11):3802-11. PubMed ID: 23178338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system.
    Li B; Liu Y; Gu J; Gao M; Pan H
    Chem Asian J; 2013 Feb; 8(2):374-84. PubMed ID: 23169699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide.
    Li W; Wu G; Xiong Z; Feng YP; Chen P
    Phys Chem Chem Phys; 2012 Feb; 14(5):1596-606. PubMed ID: 22173712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials.
    Cao H; Santoru A; Pistidda C; Richter TM; Chaudhary AL; Gizer G; Niewa R; Chen P; Klassen T; Dornheim M
    Chem Commun (Camb); 2016 Apr; 52(29):5100-3. PubMed ID: 26936831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of hydrogen absorption in Li7VN4 and Li7MnN4.
    He G; Herbst JF; Ramesh TN; Pinkerton FE; Meyer MS; Nazar L
    Phys Chem Chem Phys; 2011 May; 13(19):8889-93. PubMed ID: 21455525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction paths between LiNH2 and LiH with effects of nitrides.
    Aguey-Zinsou KF; Yao J; Guo ZX
    J Phys Chem B; 2007 Nov; 111(43):12531-6. PubMed ID: 17927242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanochemical synthesis of nanostructured metal nitrides, carbonitrides and carbon nitride: a combined theoretical and experimental study.
    Rounaghi SA; Vanpoucke DEP; Eshghi H; Scudino S; Esmaeili E; Oswald S; Eckert J
    Phys Chem Chem Phys; 2017 May; 19(19):12414-12424. PubMed ID: 28470318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destabilisation of the Li-N-H hydrogen storage system with elemental Si.
    Nayebossadri S; Aguey-Zinsou KF
    Phys Chem Chem Phys; 2011 Oct; 13(39):17683-8. PubMed ID: 21897989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C60-mediated hydrogen desorption in Li-N-H systems.
    Qian Z; Li S; Pathak B; Araújo CM; Ahuja R; Jena P
    Nanotechnology; 2012 Dec; 23(48):485406. PubMed ID: 23138595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic study of LiNH(2)BH(3) formation from (LiH)(4) + NH(3)BH(3) and subsequent dehydrogenation.
    Lee TB; McKee ML
    Inorg Chem; 2009 Aug; 48(16):7564-75. PubMed ID: 19591435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2.
    Leng H; Ichikawa T; Fujii H
    J Phys Chem B; 2006 Jul; 110(26):12964-8. PubMed ID: 16805600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides.
    Li Y; Fang F; Song Y; Li Y; Sun D; Zheng S; Bendersky LA; Zhang Q; Ouyang L; Zhu M
    Dalton Trans; 2013 Feb; 42(5):1810-9. PubMed ID: 23165760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen absorption and desorption by the Li-Al-N-H system.
    Kojima Y; Matsumoto M; Kawai Y; Haga T; Ohba N; Miwa K; Towata S; Nakamori Y; Orimo S
    J Phys Chem B; 2006 May; 110(19):9632-6. PubMed ID: 16686512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.