These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15468212)

  • 21. Emulsifying properties of biodegradable polylactide-grafted dextran copolymers.
    Raynaud J; Choquenet B; Marie E; Dellacherie E; Nouvel C; Six JL; Durand A
    Biomacromolecules; 2008 Mar; 9(3):1014-21. PubMed ID: 18271550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review.
    Coudane J; Van Den Berghe H; Mouton J; Garric X; Nottelet B
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copolymers of itaconic anhydride and methacrylate-terminated poly(lactic acid) macromonomers.
    Wallach JA; Huang SJ
    Biomacromolecules; 2000; 1(2):174-9. PubMed ID: 11710097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine.
    Fukuhira Y; Kitazono E; Hayashi T; Kaneko H; Tanaka M; Shimomura M; Sumi Y
    Biomaterials; 2006 Mar; 27(9):1797-802. PubMed ID: 16293301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradable poly (lactic acid) microspheres for drug delivery systems.
    Hyon SH
    Yonsei Med J; 2000 Dec; 41(6):720-34. PubMed ID: 11204823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility.
    Niu X; Luo Y; Li Y; Fu C; Chen J; Wang Y
    J Biomed Mater Res A; 2008 Mar; 84(4):908-16. PubMed ID: 17647223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [A study on cytocompatibility of poly (lactic acid) membrane modified by polymer microspheres with different surface charges].
    Chen D; Ji J; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):966-70. PubMed ID: 16294732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid).
    Cai N; Gong Y; Chian KS; Chan V; Liao K
    Biomed Mater; 2008 Mar; 3(1):015014. PubMed ID: 18458501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid).
    Jahno VD; Ribeiro GB; dos Santos LA; Ligabue R; Einloft S; Ferreira MR; Bombonato-Prado KF
    J Biomed Mater Res A; 2007 Oct; 83(1):209-15. PubMed ID: 17437300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology.
    Bitinis N; Verdejo R; Bras J; Fortunati E; Kenny JM; Torre L; López-Manchado MA
    Carbohydr Polym; 2013 Jul; 96(2):611-20. PubMed ID: 23768607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Nanoparticles prepared with PLA derivatives].
    Onishi H; Machida Y
    Nihon Rinsho; 2006 Feb; 64(2):225-30. PubMed ID: 16454174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices.
    Cammas S; Béar MM; Moine L; Escalup R; Ponchel G; Kataoka K; Guérin P
    Int J Biol Macromol; 1999; 25(1-3):273-82. PubMed ID: 10416675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro hydrolytic degradation of hydroxyl-functionalized poly(alpha-hydroxy acid)s.
    Leemhuis M; Kruijtzer JA; Nostrum CF; Hennink WE
    Biomacromolecules; 2007 Sep; 8(9):2943-9. PubMed ID: 17715961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bulk and surface modifications of polylactide.
    Wang S; Cui W; Bei J
    Anal Bioanal Chem; 2005 Feb; 381(3):547-56. PubMed ID: 15672238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Molecular Weight on the Marine Biodegradability of Poly(l-lactic acid).
    Seok JH; Iwata T
    Biomacromolecules; 2024 Jul; 25(7):4420-4427. PubMed ID: 38885360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and evaluation of poly (D, L-lactic acid) (PLA) or D, L-lactide/glycolide copolymer (PLGA) microspheres with estradiol.
    Xinteng Z; Weisan P; Ruhua Z; Feng Z
    Pharmazie; 2002 Oct; 57(10):695-7. PubMed ID: 12426951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ; Tan YX; Li Z; Teo LS; Goh SH; Li J
    Biomaterials; 2008 May; 29(14):2164-72. PubMed ID: 18276002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride.
    Li F; Li S; Ghzaoui AE; Nouailhas H; Zhuo R
    Langmuir; 2007 Feb; 23(5):2778-83. PubMed ID: 17243742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.