BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15468224)

  • 1. Enzymatic hydrolysis of alpha- and beta-oligo(L-aspartic acid)s by poly(aspartic acid) hydrolases-1 and 2 from Sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Yamato I; Doi Y
    Macromol Biosci; 2004 Mar; 4(3):330-9. PubMed ID: 15468224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and molecular characterization of poly(aspartic acid) hydrolase-2 from sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Tabata K; Abe H; Yamato I; Doi Y
    Biomacromolecules; 2003; 4(5):1285-92. PubMed ID: 12959596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of poly(aspartic acid) (PAA) hydrolase-1 gene from Pedobacter sp. KP-2 and hydrolysis of thermally synthesized PAA by its gene product.
    Hiraishi T; Masuda E; Kanayama N; Nagata M; Doi Y; Abe H; Maeda M
    Macromol Biosci; 2009 Jan; 9(1):10-9. PubMed ID: 18756460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis and characterization of poly(aspartic acid) hydrolase-1 from Sphingomonas sp. KT-1.
    Hiraishi T; Kajiyama M; Tabata K; Yamato I; Doi Y
    Biomacromolecules; 2003; 4(1):80-6. PubMed ID: 12523851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of poly(aspartic acid) hydrolase from Sphingomonas sp. KT-1.
    Tabata K; Kajiyama M; Hiraishi T; Abe H; Yamato I; Doi Y
    Biomacromolecules; 2001; 2(4):1155-60. PubMed ID: 11777387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.
    Hiraishi T
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1623-1630. PubMed ID: 26695157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic synthesis of poly(α-ethyl β-aspartate) by poly(ethylene glycol) modified poly(aspartate) hydrolase-1.
    Hiraishi T; Masuda E; Miyamoto D; Kanayama N; Abe H; Maeda M
    Macromol Biosci; 2011 Feb; 11(2):187-91. PubMed ID: 20954200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(aspartate) hydrolases: biochemical properties and applications.
    Hiraishi T; Maeda M
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):895-903. PubMed ID: 21713512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp.
    Tabata K; Abe H; Doi Y
    Biomacromolecules; 2000; 1(2):157-61. PubMed ID: 11710094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of enzymatic reaction of trypsin through the formation of water-soluble complexes with poly(ethylene glycol)-block-poly(alpha,beta-aspartic acid).
    Kawamura A; Yoshioka Y; Harada A; Kono K
    Biomacromolecules; 2005; 6(2):627-31. PubMed ID: 15762622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of glutamine in proteins and peptides using enzymatic hydrolysis and reverse-phase high-performance liquid chromatography.
    Tsao M; Otter DE
    Anal Biochem; 1999 Apr; 269(1):143-8. PubMed ID: 10094785
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Brambley CA; Yared TJ; Gonzalez M; Jansch AL; Wallen JR; Weiland MH; Miller JM
    J Phys Chem B; 2021 Jun; 125(22):5722-5739. PubMed ID: 34060838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Sphingomonas sp. KT-1 PahZ1 monomers efficiently degrade poly(aspartic acid).
    Lamantia T; Jansch A; Marsee JD; Weiland MH; Miller JM
    Biophys Chem; 2022 Feb; 281():106745. PubMed ID: 34953381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.
    Eneyskaya EV; Ivanen DR; Bobrov KS; Isaeva-Ivanova LS; Shabalin KA; Savel'ev AN; Golubev AM; Kulminskaya AA
    Arch Biochem Biophys; 2007 Jan; 457(2):225-34. PubMed ID: 17145041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial poly(glutamic acid) <--> poly(aspartic acid) exchange in layer-by-layer polyelectrolyte films. Structural alterations in the three-component architectures.
    Pilbat AM; Ball V; Schaaf P; Voegel JC; Szalontai B
    Langmuir; 2006 Jun; 22(13):5753-9. PubMed ID: 16768505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation, characterization and characteristics of copolypeptide consisting of L-aspartic acid and L-glutamic acid].
    Tang G; Zhu Y; Xie X; Wu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):337-41, 356. PubMed ID: 11605484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 18O labeling method for identification and quantification of succinimide in proteins.
    Xiao G; Bondarenko PV; Jacob J; Chu GC; Chelius D
    Anal Chem; 2007 Apr; 79(7):2714-21. PubMed ID: 17313184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paenidase, a novel D-aspartyl endopeptidase from Paenibacillus sp. B38: purification and substrate specificity.
    Takahashi S; Ogasawara H; Hiwatashi K; Hori K; Hata K; Tachibana T; Itoh Y; Sugiyama T
    J Biochem; 2006 Feb; 139(2):197-202. PubMed ID: 16452307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate stereoselectivity of poly(Asp) hydrolase-1 capable of cleaving β-amide bonds as revealed by investigation of enzymatic hydrolysis of stereoisomeric β-tri(Asp)s.
    Hiraishi T; Abe H; Maeda M
    AMB Express; 2015 Dec; 5(1):118. PubMed ID: 26054734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.