These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15468296)

  • 1. A new method for the evaluation of biodegradable plastic using coated cellulose paper.
    Lim HA; Raku T; Tokiwa Y
    Macromol Biosci; 2004 Sep; 4(9):875-81. PubMed ID: 15468296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of polyesters by serine proteases.
    Lim HA; Raku T; Tokiwa Y
    Biotechnol Lett; 2005 Apr; 27(7):459-64. PubMed ID: 15928850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability and biodegradation of poly(lactide).
    Tokiwa Y; Calabia BP
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):244-51. PubMed ID: 16823551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide).
    Tsuji H; Ishizaka T
    Int J Biol Macromol; 2001 Aug; 29(2):83-9. PubMed ID: 11518579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm formation during biodegradation of polylactide, poly (3,4 hydroxybutyrate) and poly(ε-caprolactone) in activated sludge.
    Swiontek Brzezinska M; Walczak M; Kalwasińska A; Richert A; Świątczak J; Deja-Sikora E; Burkowska-But A
    Int J Biol Macromol; 2020 Sep; 159():539-546. PubMed ID: 32442576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp.
    Hoshino A; Isono Y
    Biodegradation; 2002; 13(2):141-7. PubMed ID: 12449316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Ready Biodegradability of Biodegradable Plastics.
    Nabeoka R; Suzuki H; Akasaka Y; Ando N; Yoshida T
    Environ Toxicol Chem; 2021 Sep; 40(9):2443-2449. PubMed ID: 34003509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of biodegradable polyesters into cyclic oligomers under continuous flow using an enzyme-packed column.
    Osanai Y; Toshima K; Matsumura S
    Macromol Biosci; 2004 Oct; 4(10):936-42. PubMed ID: 15490437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological production of (R)-3-hydroxybutyric acid monomer.
    Tokiwa Y; Ugwu CU
    J Biotechnol; 2007 Nov; 132(3):264-72. PubMed ID: 17543411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.
    Arrieta MP; Fortunati E; Dominici F; López J; Kenny JM
    Carbohydr Polym; 2015 May; 121():265-75. PubMed ID: 25659698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of poly(L-lactide) blends and biodegradation by Lentzea waywayandensis.
    Nair NR; Nampoothiri KM; Pandey A
    Biotechnol Lett; 2012 Nov; 34(11):2031-5. PubMed ID: 22798041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyester coating of cellulose fiber surfaces catalyzed by a cellulose-binding module-Candida antarctica lipase B fusion protein.
    Gustavsson MT; Persson PV; Iversen T; Hult K; Martinelle M
    Biomacromolecules; 2004; 5(1):106-12. PubMed ID: 14715015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.
    Ju D; Han L; Li F; Chen S; Dong L
    Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films.
    Ooya T; Sakata Y; Choi HW; Takeuchi T
    Acta Biomater; 2016 Jul; 38():163-7. PubMed ID: 27090591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipase-catalyzed biodegradation of poly(epsilon-caprolactone) blended with various polylactide-based polymers.
    Li S; Liu L; Garreau H; Vert M
    Biomacromolecules; 2003; 4(2):372-7. PubMed ID: 12625734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.