BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 15468330)

  • 1. Characterization of site I of human serum albumin using spectroscopic analyses: locational relations between regions Ib and Ic of site I.
    Yamasaki K; Maruyama T; Takadate A; Suenaga A; Kragh-Hansen U; Otagiri M
    J Pharm Sci; 2004 Dec; 93(12):3004-12. PubMed ID: 15468330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive binding to the two principal ligand binding sites of human serum albumin: effect of the neutral-to-base transition.
    Yamasaki K; Maruyama T; Yoshimoto K; Tsutsumi Y; Narazaki R; Fukuhara A; Kragh-Hansen U; Otagiri M
    Biochim Biophys Acta; 1999 Jul; 1432(2):313-23. PubMed ID: 10407153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of region Ic in site I on human serum albumin. Microenvironmental analysis using fluorescence spectroscopy.
    Yamasaki K; Miyoshi T; Maruyama T; Takadate A; Otagiri M
    Biol Pharm Bull; 1994 Dec; 17(12):1656-62. PubMed ID: 7735213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin.
    Sakai T; Yamasaki K; Sako T; Kragh-Hansen U; Suenaga A; Otagiri M
    Pharm Res; 2001 Apr; 18(4):520-4. PubMed ID: 11451040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of site I on human serum albumin: concept about the structure of a drug binding site.
    Yamasaki K; Maruyama T; Kragh-Hansen U; Otagiri M
    Biochim Biophys Acta; 1996 Jul; 1295(2):147-57. PubMed ID: 8695640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin.
    Yamasaki K; Hyodo S; Taguchi K; Nishi K; Yamaotsu N; Hirono S; Chuang VTG; Seo H; Maruyama T; Otagiri M
    PLoS One; 2017; 12(6):e0180404. PubMed ID: 28662200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence study of human serum albumin binding sites modification by hypochlorite.
    Lissi E; Alicia Biasutti M; Abuin E; León L
    J Photochem Photobiol B; 2009 Feb; 94(2):77-81. PubMed ID: 19036598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.
    Goncharova I; Orlov S; Urbanová M
    Biophys Chem; 2013; 180-181():55-65. PubMed ID: 23838624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of N-B transition of human serum albumin on the specific drug-binding sites.
    Wanwimolruk S; Birkett DJ
    Biochim Biophys Acta; 1982 Dec; 709(2):247-55. PubMed ID: 6185151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the N-B transition of human serum albumin on the structure of the warfarin-binding site.
    Kasai-Morita S; Horie T; Awazu S
    Biochim Biophys Acta; 1987 Sep; 915(2):277-83. PubMed ID: 3651475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location and characterization of the suramin binding sites of human serum albumin.
    Bos OJ; Vansterkenburg EL; Boon JP; Fischer MJ; Wilting J; Janssen LH
    Biochem Pharmacol; 1990 Oct; 40(7):1595-9. PubMed ID: 2222514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fluorescent probe prodan characterizes the warfarin binding site on human serum albumin.
    Moreno F; Cortijo M; González-Jiménez J
    Photochem Photobiol; 1999 Jan; 69(1):8-15. PubMed ID: 10063798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tocainide analogues binding to human serum albumin: a HPLAC and circular dichroism study.
    Pistolozzi M; Franchini C; Corbo F; Muraglia M; De Giorgi M; Felix G; Bertucci C
    J Pharm Biomed Anal; 2010 Oct; 53(2):179-85. PubMed ID: 20359840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.
    Ma HM; Chen X; Zhang N; Han YY; Wu D; Du B; Wei Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):465-9. PubMed ID: 19054710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties.
    Maciążek-Jurczyk M; Sułkowska A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():265-82. PubMed ID: 25448930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of interaction between human serum albumin and N-alkyl phenothiazines studied using spectroscopic methods.
    Kandagal PB; Kalanur SS; Manjunatha DH; Seetharamappa J
    J Pharm Biomed Anal; 2008 Jun; 47(2):260-7. PubMed ID: 18313253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands.
    Kragh-Hansen U
    Mol Pharmacol; 1988 Aug; 34(2):160-71. PubMed ID: 3412320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model.
    Zsila F
    Mol Pharm; 2013 May; 10(5):1668-82. PubMed ID: 23473402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for distinct consecutive steps in the neutral to base transition of human serum albumin.
    t' Hart BJ; Wilting J; de Gier JJ
    Biochem Pharmacol; 1986 Mar; 35(6):1005-9. PubMed ID: 3954791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method dependence of apparent stoichiometry in the binding of salicylate ion to human serum albumin: a comparison between equilibrium dialysis and fluorescence titration.
    Ozer I; Tacal O
    Anal Biochem; 2001 Jul; 294(1):1-6. PubMed ID: 11411999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.