BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15468828)

  • 41. [Preliminary study on chitosan/HAP bilayered scaffold].
    Zhang H; Wang W; Chu D; Liu Y; Guan J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sr-substituted hydroxyapatites for osteoporotic bone replacement.
    Landi E; Tampieri A; Celotti G; Sprio S; Sandri M; Logroscino G
    Acta Biomater; 2007 Nov; 3(6):961-9. PubMed ID: 17618844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder.
    Itoh H; Wakisaka Y; Ohnuma Y; Kuboki Y
    Dent Mater J; 1994 Jun; 13(1):25-35. PubMed ID: 7842639
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrical characterization of hydroxyapatite-based bioceramics.
    Gittings JP; Bowen CR; Dent AC; Turner IG; Baxter FR; Chaudhuri JB
    Acta Biomater; 2009 Feb; 5(2):743-54. PubMed ID: 18829403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants.
    Slósarczyk A; Szymura-Oleksiak J; Mycek B
    Biomaterials; 2000 Jun; 21(12):1215-21. PubMed ID: 10811303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of heat treatment of calcium hydroxyapatite particles on the protein adsorption behavior.
    Kandori K; Mizumoto S; Toshima S; Fukusumi M; Morisada Y
    J Phys Chem B; 2009 Aug; 113(31):11016-22. PubMed ID: 19603779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL; Khor KA; Gu YW; Kumar R; Cheang P
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites.
    Zhang Y; Hao L; Savalani MM; Harris RA; Tanner KE
    J Biomed Mater Res A; 2008 Sep; 86(3):607-16. PubMed ID: 18022838
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Porous hydroxyapatite tablets as carriers for low-dosed drugs.
    Cosijns A; Vervaet C; Luyten J; Mullens S; Siepmann F; Van Hoorebeke L; Masschaele B; Cnudde V; Remon JP
    Eur J Pharm Biopharm; 2007 Sep; 67(2):498-506. PubMed ID: 17407810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics.
    Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D
    Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sol-gel synthesis of a multifunctional, hierarchically porous silica/apatite composite.
    Andersson J; Areva S; Spliethoff B; Lindén M
    Biomaterials; 2005 Dec; 26(34):6827-35. PubMed ID: 15993485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique.
    Pratihar SK; Garg M; Mehra S; Bhattacharyya S
    J Mater Sci Mater Med; 2006 Jun; 17(6):501-7. PubMed ID: 16691347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper thick film sintering studies in an environmental scanning electron microscope.
    Link LF; Gerristead WR; Tamhankar S
    Microsc Res Tech; 1993 Aug; 25(5-6):518-22. PubMed ID: 8400447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expansion of nanosized pores in low-crystallinity nanoparticle-assembled plates via a thermally induced increase in solid-state density.
    Okada M; Fujiwara K; Uehira M; Matsumoto N; Takeda S
    J Colloid Interface Sci; 2013 Sep; 405():58-63. PubMed ID: 23777865
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sintering effects on the strength of hydroxyapatite.
    Ruys AJ; Wei M; Sorrell CC; Dickson MR; Brandwood A; Milthorpe BK
    Biomaterials; 1995 Mar; 16(5):409-15. PubMed ID: 7662827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface porosity and roughness of micrographite film for nucleation of hydroxyapatite.
    Asanithi P
    J Biomed Mater Res A; 2014 Aug; 102(8):2590-9. PubMed ID: 24038761
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of bisphosphonate release using hydroxyapatite granules.
    Seshima H; Yoshinari M; Takemoto S; Hattori M; Kawada E; Inoue T; Oda Y
    J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):215-21. PubMed ID: 16544308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.